Flame Synthesis of Single-walled Carbon Nanotubes

C.J. Unrau¹, R.L. Axelbaum¹, P. Biswas², and P. Fraundorf³

¹Dept. of Mechanical Engineering, Center for Materials Innovation, Washington University in St. Louis, St. Louis, MO 63130, rla@me.wustl.edu
²Dept. of Environmental Engineering, Center for Materials Innovation, Washington University in St. Louis, St. Louis, MO 63130
³Dept. of Physics & Astronomy/Center for Molecular Electronics, University of Missouri-St. Louis, St. Louis, MO 63121

1. Synthesis Approaches and Applications

<table>
<thead>
<tr>
<th>Supported Catalyst Approach</th>
<th>Floating Catalyst Approach</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Techniques: Applications
- Chemical vapor deposition (CVD)
- Nano-electronic devices
- Field-emission displays
- AFM tips

Baughman et al. (2005) Science, 309, 1215-1219

2. Challenges of CNT Flame Synthesis

PAH ‘poisoning’ of catalyst particles

![Particle Encapsulation Image](image3.png)

3. Nanotube Characterization

- Current off-line diagnostic tools include TEM, SEM, and Raman Spectroscopy
 - Detailed information about a small number of particles
 - Off-line
 - Long turn around time
- On-line diagnostics are needed for rapid optimization
 - Number concentration
 - Purity
 - Length

4. Objectives

1. Develop a diffusion flame process for synthesizing single-walled carbon nanotubes (SWNTs) that minimizes carbonaceous contaminates.
2. Develop a method to obtain on-line information using a Scanning Mobility Particle Sizer (SMPS).
3. Employ the SMPS system to characterize the flame process
4. Improve catalyst yield using composite catalyst particles

5. Soot-Free Flames by Fuel Dilution and Oxygen-Enrichment

- Flame structure is characterized by the stoichiometric mixture fraction

\[Z_\text{a} = \left(1 + \frac{Y_F W_F}{Y_O W_O} \right)^{-1} \]

- Fuel/Air, \(Z_\text{a} = 0.064 \)
- Diluted fuel/O₂, \(Z_\text{a} = 0.78 \)

6. Experimental Approach with Online Diagnostics

- A Scanning Mobility Particle Sizer is employed as an online diagnostic tool
- Due to the difference in drag force, catalyst particles and carbon nanotubes will be classified separately by their electrical mobility
- Thus, flame conditions were adjusted until a bimodal distribution appeared, indicating nanotube formation

Typical size distribution and single-walled carbon nanotube

![Typical Size Distribution Image](image4.png)

7. Effect of \(Z_\text{a} \) at \(T = 1920 \text{ K} \)

- Equivalent Mobility Diameter (nm)
- Number Concentration (#/cm³)

8. SWNT Growth Rate

- The electrical mobility of a carbon nanotube is given by:

\[Z = \frac{nc(d)}{3\pi\eta L(D_d)} \]

- To obtain a length measurement, we assume a charge of unity, an average diameter of 2 nm, a cylindrical shape, and an orientation parallel to the electric field in the DMA
- Average growth rate of 125 \(\mu \text{m/s} \)

9. Composite Catalysts: Addition of Si

- FeO Catalyst Synthesis
- FeSiO Catalyst Synthesis

- HREM image below showing single walls and a diameter of only 1.0-1.1 nm

Acknowledgements

- Funded by the NASA Missouri Space Grant and by the Center for Materials Innovation at Washington University