Introduction & Motivation

Electrochemical systems are widely used for being efficient and environmental friendly, but...

System: Electrochemical cell with gas evolving electrodes

- Gas and liquid flow fields
- Bubble-liquid interactions

Focus on:
- Bubble departure from the surface
- Mass transfer
- Bubble coalescence

Increase efficiency

Multiscale Modeling

1-D models → Simple, informative, capable of capturing averaged efficiency parameters

- Detailed flow field prediction → Navier-Stokes equations (PDE)
- Toolkit: CFD

PDE's → Requires BC's to solve

- Electron balance: Faraday’s law
- Mass of gas injected

Can we use sub-models to better represent the physical phenomena near the electrode?

Experimental System & Techniques

Electrochemical system with gas evolving electrode

- Phase hold-up
- Bubble size
- Qualitative description

System:
- Anode: RuO$_2$/TiO$_2$ dimensional stable anode (DSA*)
- Cathode: Titanium

Suitable for
- Chlorate production
 \[\text{NaClO}_3 + 3 \text{H}_2\text{O} \rightarrow \text{NaCl} + \text{H}_2\text{O}_2 \]
- Water splitting
 \[2\text{H}_2\text{O} \rightarrow 2\text{H}_2 + \text{O}_2 \]

Optical Probe

High speed Camera

Planned Experiments

Aim: Systematically investigate the effect of different bubble sizes on the flow characteristic. This will be done in three phases:

1. **Testing the limits of the experimental apparatus**
 - Externally inject bubble the system through distributor at the bottom (Controlled conditions)
 - Test the limits of the pressure fluctuation method for different flow regimes
 - Outline the pressure signature for different flow regimes
 - Use the camera to qualitatively map the flow field
 - Use pressure transducer due to calibrate the pressure transducers

2. **Analyzing the system under controlled conditions**
 - Create artificial gas evolving wall by injecting gas a porous membrane
 - Use the camera to qualitatively map the flow field
 - Map pressure signal with respect to bubble size

3. **Analyzing system with gas evolving electrode**
 - Run the electrochemical system under different operating conditions
 - Use the map on step 2 to characterize the flow the electro chemical system with gas evolving electrode

Modeling

Bubble Growth on the Surface

- Cyclic generation and departure of bubbles
- The inflation of bubble introduces additional resistance
- Lower reaction rate

Wait Period

- Wait Period
 - Departure of bubble
 - Convective transfer of species to the wall

Inflation Period

- Inflation
 - Transfer of reactants to the wall
 - Reaction on the wall
 - Transfer of products to the nucleation site
 - Change bubble volume (Inflation)

Island model will be used to calculate the rate of bubble inflation hence the temporal change in bubble coverage.

How does the surface coverage affect the reaction?

- An time estimate relationship will be introduced (similar to nucleate pool boiling)3

Summary

- For a given current density the surface coverage is a distribution

\[\theta(t) = \frac{A_{l(x)}}{A_{l(x)}} \]

References

1. For different aspects of the work, please refer to Annual CREL report (Page 54) or contact me directly at moral@wustl.edu