Hydrodynamics of Trickle Bed Reactors Chemical Reaction Engineering Laboratory (CREL)

Introduction – trickle flow

Experimental hydrodynamics investigation focused on the flow distribution

Eulerian CFD modeling

Development of validation methodology

Extension of model – development of closures capable of capturing the effect of flow pattern

Experimental

High pressure trickle bed reactor

Experimental Conditions

Pressure, barg	1 to 8
Column Diameter, m	0.163
Bed Height, m	0.69
Fluids used	Water and Ai
	3 mm glass beads & 1.9
Packing	mm alumina extrudates

Collector used for fluxes measurements

Zeljko Kuzeljevic, Dan Combest, Muthanna Al-Dahhan, Milorad Dudukovic Department of Energy, Environmental, and Chemical Engineering (WUStL)

Characterization of the uniformity of liquid distribution

$$M_{f} = \sqrt{\frac{1}{N(N-1)} \sum_{i=1}^{N} \left(\frac{FLUX_{i} - \overline{FLUX}}{\overline{FLUX}}\right)^{2}}$$

N - Number of compartments (15) \overline{FLUX} - Average flux *FLUX_i* - Flux in the compartment *i*

Maldistribution factor – experimental results

Hysteresis in trickle flow

Dependence of the extent of hysteresis on the operating pressure is a strong function of the operating flowrates At the lower flowrates, hysteresis persists regardless of t pressure

Computational fluid dynamics modeling

 $\frac{\partial \varepsilon_k \rho_k \mathbf{u}_k}{\partial t} + \nabla \cdot \varepsilon_k \rho_k \mathbf{u}_k \mathbf{u}_k = -\varepsilon_k \nabla \mathbf{P} + \nabla \cdot \varepsilon_k \mu_k \nabla \cdot \mathbf{u}_k + \sum_{k,q}^{nq} \mathbf{F}_{k,q} \mathbf{u}_k - \mathbf{u}_q + S$

Equations solved on the computational domain:

Conservation of mass

 $\mathbf{A} \quad \frac{\partial \varepsilon_k \rho_k}{\partial \boldsymbol{\varepsilon}_k} + \nabla \cdot \varepsilon_k \rho_k \mathbf{u}_k = 0$ OI

Conservation of momentum

- Maldistribution factor $M_f = 0$ - Uniform distribution $M_f = 1$ - Completely maldistributed
- Most pronounced effect liquid velocity Increased operating pressure or gas velocity do not significantly increase uniformity of liquid phase distribution

Comparison with CFD

- Porosity distribution on the domain Gaussian (Jiang et al., 2001)
- Phase interactions closures (Attou et al.) al., 1999)
- Capillary closure (Grosser et al., 1988)
- Solution strategy, Boundary and Initial Conditions

This work was supported by the National Science Foundation Engineering Research Centers Program, Grant EEC-0310689 Dr. Werner van der Merwe, Prof. Willie Nicol (Pretoria University, South Africa)

- TOTAL

