Advancing Green Reactor Engineering by Fundamental Characterization of Multiphase Flows
Sean G. Mueller, Raghunath V. Chaudhari, Bala Subramaniam, Milorad P. Dudukovic
Chemical Reaction Engineering Laboratory (CREL) & Center for Environmentally Beneficial Catalysis (CEBC)

Green Engineering
Need:
Develop environmentally friendly and cost effective processes

Possible Routes
- Reduce waste and pollution by increasing reactor performance and efficiency through better understanding of reactor design and scale-up
- Produce fuels and chemicals from renewable sources of energy
- Use carbon dioxide expanded liquids (CXLs) which can replace harmful solvents, such as volatile organic compounds (VOCs), with up to 80% (by volume) carbon dioxide

How does our research fit in?
Emerging green processes show great potential; however, they are not well characterized - this limits their widespread implementation in industry. Our goal is to create novel fiber-optic measurement techniques that are used to quantitatively describe multiphase reactors (bioreactors and CXLs) at industrially relevant operating conditions where many current, experimental techniques cannot be used or are too expensive.

Fiber-Optic Probes
- Inexpensive compared to many of today’s current measurement techniques
- Sense differences in gases and liquids at high-frequency (100 kHz) sampling rates allows for use as on-line process control tools
- Invasive technique allows investigation of opaque reactors operating at high pressures and temperatures

4-Point Mini-Probe
Improved working pressure and temperature of probe to 180 bar and 375 ºC and reduced size to 0.625 mm for characterization of smaller bubbles
Detectors
- Gas holdup
- Bubble velocity
- Bubble size
- Bubble surface area

Flow Regimes in a Stirred Tank
The optical probe can also be used as a process control tool that monitors flow regime changes in an opaque stirred tank

Critical Opalescence Probe
New design simplifies construction, improves signal/noise ratio, increases active sampling area, and eliminates dead space. These improvements allow this probe to track critical phase boundaries of complex, poorly described multicomponent systems.

References
Special thanks to the National Science Foundation for funding. Grant #: EEC-093370.