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ChE 471:  LECTURE 4 Fall 2003 
 

IDEAL REACTORS 
 

One of the key goals of chemical reaction engineering is to quantify the relationship between 

production rate, reactor size, reaction kinetics and selected operating conditions.  This requires a 

mathematical model of the system, which in turn rests on application of conservation laws to a 

well-defined control volume of the reaction system and on use of appropriate constitutive 

expressions for the reaction rates.  The concepts of ideal reactors allow us to quantify reactor 

performance as a function of its size and selected operating conditions. 

 

To illustrate this useful concept we deal here with a single, homogeneous phase, single reaction 

at constant temperature.  We introduce then the ideal batch reactor, and two ideal continuous 

flow reactors.  In each case we apply the conservation of species mass principle which states 

(Rate of Accumulation) = (Rate of Input) – (Rate of Output) + (Rate of Generation) (2-1) 

 

Equation (2-1) is applied to an appropriately selected control volume, the largest arbitrarily 

selected volume of the system in which there are no gradients in composition. 

 

2.1 Batch Reactor 
The ideal batch reactor is assumed to be perfectly mixed.  This implies that at a given moment in 

time the concentration is uniform throughout the vessel.  The volume, V in the development 

below is assumed equal to the volume of the reaction mixture.  This is then equal to the reactor 

volume VR in case of gas phase reaction but not in case of liquids (V< VR, then). The batch 

reactor can be an autoclave of V = const (Figure 2.1-a) and a constant pressure, P = const) 

(Figure 2.1-b) vessel.  The former is almost always encountered in practice. 

 
Our goal is: 

a) To find a relationship between species concentration (reactant conversion) and time on 

stream. 

b) To relate reactor size and production rate. 
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Let us consider a single irreversible reaction A→P  with an n-th order irreversible rate of 

reaction 

−RA = kCA
n  (2-2) 

 

At t = 0 a batch of volume V is filled with fluid of concentration CAo.  Reaction is started (nAo= 

CAoVo).  Find how reactant conversion depends on reaction time?  Also determine the production 

rate as a function of reaction time.   

 

We apply (eq 2-1) to reactant A: 

0 − 0 + (RAV) =
dnA
dt

=
d(VCA )
dt

 (2-3) 

 

 

 

a) V = const b) P = const 

 

FIGURE 2-1: Schematic of Batch Reactors 

In our case due to the fact that υ j = 0
j=1

2

∑ , V= const irrespective of the batch reactor type, so that 

eq (2-3) becomes 
dCA
dt

= RA  (2-4) 

−
dCA
dt

= (−RA ) = kCA
n ; t = 0 CA = CAo   (2-5) 

 
Separation of variables and integration yields: 

dt = −
dCA
kC A

n
CA0

CA

∫
o

t

∫ =
1
k

dCA
C A
n

CA

CAo

∫  (2-6) 
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t o
t =

1
k
CA

1−n

1−n CA

CAo

t−0 =
1

k(1− n)
CAo

1−n −CA
1−n[ ]

  (2-7) 

t =
CAo

1−n

k(1 −n)
1− (1− xA )1−n[ ] (2-8a) 

 
or 

t =
1

k(n −1)CAo
n−1 (1− xA )1−n −1[ ] (2-8b) 

 
Once order of reaction, n, is specified (as shown below for n=0, 1, 2, 1.5), the relation between t 

and xA is readily found 

  

n = 0

t =
CAo xA
k

n =1
t = 1
k

ln 1
1− xA

n = 2

t =
1
kCAo

1
1− xA

−1
 

  
 

  
 (2-9) 

n = 1.5; t =
1

0.5k CAo

1
(1− xA )0.5 −1

 

  
 

   

 
Production Rate of Product P can be related by stoichiometry to he consumption rate of A as  

FP
mol
S

 
 

 
 =

FAoxA
1

 

 
The production rate of P is given by: 

FP =
(moles of P processed per batch)

(reaction time + shut down time per batch)
  (2-10) 

FP =
CAoV xA
t + ts

=
CAoV x A

1
k(n −1)CAo

n−1 (1− xA )1−n[ ]+ ts
  (2-11) 

 

NOTA BENE: Equation (2-11) is valid only for systems of constant density.  Thus, it is valid 

for all systems, gas or liquid, conducted in an autoclave at V = const (see 

Figure 2-1a).  It is also valid for gaseous systems with no change in the 
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number of moles ν j = 0∑( ) conducted in P = const. system at T = const 

(Figure 2-1b). 

The first equality in equation (2-11) gives the general result, the second equality presents the 

result for an n-th order irreversible reaction with resect to reactant A. 

 

To use this equation the shut down time, i.e. the time needed between batches, ts, must be 

known.  Consider now the following second order reaction with stoichiometry  A = P. 

−RA = 0.1CA
2 mol
Lmin

 
 
  

 
 

 

a) Find the batch reactor volume needed to produce FP = 38 kmol/min if reactor shut down 

time is 60 minutes and the desired conversion is 0.95.  Initial reactant concentration is 

CAo = 1 (mol L). 

 

Using the right form of equation (2-9)  for n = 2 we get the reaction time. 

t=
1

0.1∗ 1
1

1− 0.95
−1 

  
 
  =

1
1−0.95

= 190.0(min)  

 

Then, solving equation (2-11) for the volume we get 

V =
FP (t + ts )
CAoxA

=
1.38(190 + 60)

1x0.95
= 10,000L = 10m 3  

 

b) What is the maximum production rate, FP, achievable in the above batch reactor of 

volume V=10m3 if  ts, T, CAo all are fixed at previous values. 

 

Consider eq (2-11) for production rate  as a function of conversion  

FP =
CAoV xA

1
kCAo

x A
1− xA

 

  
 

  + ts

=
104 xA

10
xA

1− xA
+60

=
103x A
xA

1− x A
+ 6

 

FP = 103 xA(1− x A)
xA + 6(1− xA

= 103 xA − xA
2

6 − 5xA
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This expression has a maximum which we can locate by differentiation 
dFP
dxA

= 0 ⇒ (1− 2x A )(6− 5xA ) + 5 (xA − x A
2 ) = 0 

6−5x A −12xA +10xA
2 + 5xA − 5xA

2 = 0

6−12xA +5x A
2 = 0

xA1, 2
=

6 ± 36− 30
5

=
6− 6

5
= 0.710

 

Clearly, the positive sign is not permissible as conversion cannot exceed unity.  We need to 

check whether the answer is a maximum or a minimum. 
dFP
dxA

> 0 for xA < 0.710

dFP
dxA

< 0 for xA > 0.710
 

Maximum at xA = 0.710. 

FPmax
=103 0.710 − 0.7102

6 − 5x0.710
= 84.0

mol
min

 

 

An increase in productivity of 
84 − 38

38
x100 =121%  can be achieved at the expense of more 

unreacted A to be recycled. 

 

One must include the cost of separation into the real economic optimization. 

 

2.2 Continuous Flow Reactors (Steady State) 

2.2.1 Continuous Flow Stirred Tank Reactor (CFSTR or CSTR or STR) 
The CSTR is assumed perfectly mixed, which implies that there are no spatial gradients of 

composition throughout the reactor.  Since the reactor operates at steady state, this implies that a 

single value of species concentration is found in each point of the reactor at all times and this is 
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equal to the value in the outflow.  The outflow stream is a true representative of the reaction 

mixture in the reactor. 

 

FAO

CAO

FA = FAo 1 −x A( )

CA

 
FIGURE 2-2: Schematic of a Continuous Flow Stirred Tank Reactor (CSTR) 

 

What does the above idealization of the mixing pattern in a CSTR imply?  It postulates that the 

rate of mixing is “instantaneous” so that the feed looses its identify instantly and all the reaction 

mixture is at the composition of the outlet.  Practically this implies that the rate of mixing from 

macroscopic level down to a molecular scale is orders of magnitude faster than the reaction rate 

and is so fast in every point of the vessel. 

 

Then the mass balance of eq (2-1) can be applied to the whole volume of the reactor recognizing 

that at steady state the accumulation term is identically zero.  Again, taking a simple example of 

an irreversible reaction A →P application of eq (2-1) to reactant A yields: 

FAo – FA + ((RA)V=0 (2-12) 

  

Molar flow rate of unreacted A in the outflow by definition is given by  FA = FAo (1-xA) = Q CAo 

(1-xA).  The production rate of P is given by   

FP = (−RA )V = (RP )V  (2-13) 

 

Reactor volume is given by eq (2-12) 

V =
FAox A
(−RA )

=
QoC Aox A

(−RA )
  (2-14) 
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Reactor space time is defined by 

τ =
V
Qo

=
C Aox A
(−RA )

  (2-15) 

 

Using stoichiometry we readily develop the relation between production rate, FP, and reactor 

volume, V.   

 

Let us consider again the example of our 2nd order reaction, A = P, with the rate below: 

−RA = kC A
n = 0.1CA

2 mol
Lmin

 
 

 
  

 

Find CSTR volume needed to process FP = 38 mol/min.  Suppose we choose again xA = 0.95 for 

our exit conversion. 

 

From eq (2-13) we get 

FP = 0.1 C Ao
2  (1-xA)2 V 

 

And solving for volume V 

V =
FP

0.1CAo
2 (1− x A)

2 =
38

0.1x1(1 −0.95)2 =152,000L =152m 3  

If we consider eq (2-13) it is clear that now the maximum production rate is obtained when the 

reaction rate is the highest.  That for n-th order reactions is at zero conversion.  So the maximum 

FP from VCSTR = 12,000 L is obtainable  at xA = 0. 

 

FPmax
=0.1 x 1 x 152,000 = 15,200 mol/min. 

The penalty or this enormous production rate is that the product is at “zero” purity.  Hence, the 

separation costs would be enormous.  The average rate in a CSTR is equal to the rate at exit 

conditions. 

(−RA ) = (−RA) exit = 0.1CAo
2 (1− xA )exit

2 = 0.1x1(1− 0.95)2 = 2.5x10−4 (mol / Lmin)
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2.2.2 Plug Flow Reactor (PFR) 
The main assumptions of the plug flow reactor are:  i) perfect instantaneous mixing 

perpendicular to flow, ii) no mixing in direction of flow 

 

This implies piston like flow with the reaction rate and concentration that vary along reactor 

FAO

CAO

FA = FAo 1 −x A( )

CAO

FAo dx A = −RA( )dV
 

FIGURE 2-3: Schematic of a Plug Flow Reactor (PFR) 

  

Since there are now composition gradients in the direction of flow, the control volume is a 

differential volume ∆V  to which eq (2-1) is applied.  Let us again use the mass balance on 

reactant A 

 

FA V − FA V+∆V+RA ∆V = 0   (2-16) 

−∆FA + RA∆V = 0  

− lim
∆V→0

∆FA
∆V

= lim( )(−RA )
∆V→0

 

−
dFA
dV

= (−RA ) (2-17) 

 

Since FA = FAo (1− xA ) then dFA = −FAodxA   

      

so that 

FAo
dxA
dV

= (−RA )  (2-18) 

  

With initial conditions: 

V = 0 xA = 0   (2-19) 
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Upon separation of variables in (eq 2-18) and integration: 

dV = FAo
o

V

∫
dxA

(−RA )o

xA

∫  (2-20) 

 
For an n-th order reaction (with ε A = 0) we get 

V =
FAo
kC Ao

n
dxA

(1− xA )no

xA

∫ =
Qo

kCAo
n−1

(1− xA )1−n −1[ ]
(n −1)

 (2-21) 

 
The expression for the PFR space time 

τ =
V
Qo

=
1

kC Ao
n−1 (n −1)

(1− xA )1−n −1[ ] (2-22) 

 
is now identical to the expression for reaction time t in the batch reactor. 

For the example of the second order reaction used earlier we get 

 

V = FAo
dx A

kCAo
2 (1− xA )2

o

xA

∫ =
FAo
kCAo

2
1

1− xA

 

  
 

  
o

xA

 

V =
FAo
kCAo

2
1

1− x A
−1

 

  
 

  =
FAo
kCAo

2
xA

1− x A

 

  
 

   

FAo = Qo CAo 

τ =
V
Qo

=
1
kC Ao

xA
1− xA

  (Same as the expression for reaction time t   in the batch reactor) 

 

Let us consider our example of the second order reaction and find the PFR volume needed to 

produce FP = 38 mol/min 

(−RA ) = 0.1CA
2 mol
Lmin

 
 
  

 
 

when CAo = 1
mol
L

 
 

 
  and desired conversion xA = 0.95. 

From stoichiometry it follows that 

FAox A = FP FAo =
FP
xA
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Substitution in the expression for reactor volume (eq (2-21)) we get: 

V = FP
kCAo

2 x A

xA
1− x A

 

  
 

  =
FP

kCAo
2 (1− x A)

V =
38

0.1x1(1− 0.95)
= 7,600L = 7.6m3

 

 

The maximum production rate from that volume can be obtained at zero conversion  

FP = kCAo
2 (1− xA )V

FPmax
= 0.1x1x7600 = 760mol / min

 

 

Average rate in PFR −RA =
FAox A
V

=
FP
V

=
38

7,600
= 5.0x10−3 mol

min
 

(−RA ) entrance = 0.1CAo
2 = 0.1 =10−1 mol

Lmin
 
 

 
  

(−RA ) exit = 0.1CAo
2 (1− 0.95)2 = 2.5x10−4 mol

Lmin)
 
 
  

 
 

 

Clearly there is a big variation in the reaction rate between the entrance and exit of the plug flow 

reactor (PFR). 

 

2.3 STY – Space Time Yield 

Volumetric Reactor Productivity - RVP 

 

Reactor volumetric productivity (RVP) is defined by: 

 RP =
FP
V

  (2-23) 

For our 2nd order reaction example of stoichiometry A=P, RVP for the two continuous flow 

reactors is: 

 

CSTR RP = (RP )exit = (−RA) exit = kCAo
2 (1− xA )2  (2-24a) 

PFR  RP =
FP
V

= kCAo
2 (1− x A ) (2-24b) 
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For the  same exit conversion 

(RP )PFR
(RP )CSTR

=
kCAo

2 (1− x A)
kCAo

2 =
1

(1 − xA )
 

 

At xA = 0.95 

(RP ) PFR
(RP )CSTR

= 20  

 

Indeed 20 x 7,600 L = 152,000 L 

This is why higher CSTR volume is needed. 

At xA = 0           (RP )PFR = RP( )CSTR  

 

There is no difference! 

Let us consider another example to illustrate some important points. 

 

Ex: 2A + 3B = P + S – stoichiometry 

r = 0.1CACB
2 mol
L min

 

 
  

 
  - rate of reaction 

CAo = 2
mol
L

 
 

 
 and xA = 0.95  - are the  feed reactant concentration and desired conversion 

FP = 10 mol/min is the  desired production rate 

 

Assume first that we will operate at stoichiometric ratio so that CBo = 3 (mol/L). The reaction 

occurs in the liquid phase so that ε A = 0.  Find the needed reactor volume. 

a) Batch (ts = 60 min) 

−RA = 0.2CAo (1 − xA )(CBo − b
a
CAo xA )2

−RA = 0.2CAo
3 (1 − xA )

3
2

 
 

 
 

2

(1− xA )2

−RA = 0.2CAo
3 (1 − xA )3 3

2
 
 

 
 

2
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Reaction time is: 

 

t=
1

0.2C Ao
2 3

2
 
 

 
 

2

dxA
(1− xA )3

o

xA

∫

t=
1

0.2x22
g
a

dx
(1− x)3

o

xA

∫ =
1

1.8
1
2

1
(1− x )2

o

xA

t=
1

3.6
1

(1− x A )2 −1
 

  
 

  =
1
36

1
(1− 0.95)3 −1

 
  

 
  

 

 t = 110.83 min 

 FP =

1
2
CAoxAV

t + ts
=

0.95xV
110.83 +60

= 10 

 V= 
170.83x10

0.95
= 1,798L = 1.8m3  

b) CSTR  
FAo
2

=
FP
1

 - from stoichiometry 

V
FAo

=
x A

−RA
 - basic design equation (2-14) 

V =
FAo xA
−RA

=
2FP

(−RA )
=

2FP
0.2CACB

2  

V =
FP

0.1CAo
3 (1− x A)

CBo
CAo

− 3
2
x A

 

 
  

 
 

2 =
FP

0.1CAo
3 3

2
 
 

 
 

2

(1 − xA )3
 

V =
10

0.1× 2× 9(1− 0.95)3 =
10
1.8

1
0.053 = 4,444(L ) = 44.4m 3 

 (−RA ) = (−RA) exit = 0.2xCAo
3 3

2
 
 

 
 

2

(1 − xA ) exit
3  

 = 0.2x2x9(1-0.95)3 = 4.5 x10-4 (mol/L min) 
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c) PFR 

 FAo =
2FP
xA

 - from stoichiometry 

Basic design equation (2-21) 

V = FAo
dxA
−RAo

xA

∫ = FAo
dx

0.2C Ao
3 (1− x)

3
2

 
 

 
 

2

(1− x )2o

xA

∫  

V =
2FP

0.2CAo
3 3

2
 
 

 
 

2

x A

dx
(1− x )3

o

xA

∫ =
100

18x0.95
dx

(1− x )3
o

xA

∫  

V =
100

18x0.95
1
2

1
(1 − xA )2 −1

 

  
 

   

= 
50

10× 0.95
1

(1− 0.95)2 −1
 
  

 
  =1,167(L ) =1.17m 3 

 
Now the rate, at stoichiometric feed ratio, along the PFR as a function of conversion is 

−RA = 0.2CAo
3 3

2
 
 

 
 

2

(1− xA )3 = 3.6(1− xA )3 

 
PFR reactor volume as function of conversion at stoichiometric feed ratio is 

V =
2FP

3.6xA

dx
(1− x)3

o

xA

∫ =
FP

1.8xA

dx
(1 − x)3

o

xA

∫  

 

Hence, the production rate from a given PFR volume as a function of conversion (at 

stoichiometric feed rate) is 

FPstoich =
1.8xAV
dx

(1− x)3
o

xA

∫
=

3.6xAV
1

(1− x A )2 −1
 

 

How much can we increase the production rate by doubling CBo  to CBo = 6 (mol/L), i.e. by using 

B in excess?   
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Now the rate as a function of conversion is: 

−RA = 0.2CAo
3 1− xA( )

C Bo

C Ao

 
 
  

 
 −

3
2
xA

 

 
  

 
 

2

= 0.2x23x
3
2

 
 

 
 

2

(1− x )(2− x A )2

−RA = 3.6(1− xA )(2 − xA )2

 

        

a) Batch 

 t = CAo
dxA

(−RA )o

xA

∫ =
2

3.6
dx

(1− x)(2 − x)2
o

xA

∫  

 
To integrate use partial fractions: 

A
1− x

+
B +Cx

(2 − x)2 =
A(2 − x)2 + (B +Cx)(1− x)

(1 − x)(2 − x)2  

4A− 4Ax + Ax 2 + B− Bx + Cx −Cx2 =1 

4A+B=1  4A-3A=1  A=1 

-4A-B+C=0  -3A-B-0  B=-3A  B=-3 

A-C=0   C=A = 1 
dx

(1 − x)(2 − x)2∫ =
dx

1− x∫ +
x − 3

(2 − x)2 dx  

=
dx

1 − x
−

2 − x
(2 − x)2 dx −

1
(2 − x)2 dx

 
 
  

 
o

xA

∫  

  
= −ln(1 − x) + ln(2 − x) −

1
2 − x

 
 

 
 
o

xA

 

  
=−ln(1− xA )+ 0 + ln(2− xA )− ln2−

1
2− xA

+
1
2

 

  
= ln

2 − xA
2(1− xA )

+
1
2

1−
2

2 − xA

 

  
 

  = ln
2 − xA

2(1 − xA

 

  
 

  −
xA

2(2 − xA )
 

  

t =
1

1.8
ln

2 − xA
2(1 − xA

 

 
  

 
 −

xA
2(2 − xA )

 

  
 

  
xA= 0.95

 

  
t =

1
1.8

ln
1.05

2x0.05
−

0.95
2x1.05

 
 

 
 

=
1

1.8
ln10.5 −

0.95
2.1

 
 

 
  

t = 1.055 min  Batch ill advised at these conditions since  ts >> t! 
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FPnew =

1
2
CAoxAV

t + ts
=

0.95x1,798
1.06 + 60

= 27.97
mol
min

 

∆FP
FPold

× 100 =
27.97−10

10
× 100 =179.7%  

By operating at double the stoichiometric requirement of B we increase, at same xA, the 

production rate of the  batch reactor by 180%. 

 

b)  CSTR  

−RA = 3.6(1 − xA )(2 − xA)
2 − 3.6(1− 0.95)(2 − 0.95)

2

 

−RA = 3.6x0.05x1.052 = 0.19845
mol
L min

 
 
  

 
 

FPnew = RPV =
−RA

2
 
 

 
 V =

0.19845
2

× 44,494 = 4,410
mol
min

 

∆FP
FPold

× 100 =
4,410 −10

10
x100 = 44,000% 

 

 In a CSTR we increase the production rate by 44,000%! 

 

c) PFR  

 V = FAo
dx

3.6(1 − x)(2 − x)2
o

xA

∫  

 FPnew
VxA

2
3.6

dx
(1 − x)(−x)3

o

xA

∫
=

1.8xAV
dx

(1 − x)(2 − x)3
o

xA

∫
 

 

  

FPnew =
1.8xAV

ln
2 − xA

2(1 − xA)
 
 
  

 
 −

xA
2(2 − xA )

 

  
 

  

 

 

  

FPnew =
1.8x0.95x1,167

ln 2 − 0.95
2(1− 0.95)

− 0.95
2(2 − 0.95)

=
1.8x0.95x1,167

ln 1.05
0.1

− 0.95
2.10

 

 FPnew = 1,051mol / min 



 16

 
∆FP
FPold

x100 =
1,051−10

10
x100 =10,419%  

 

In a PFR over 10,000% increase in FP is obtained.   

 

We present below these ratios of production rate obtainable at  nonstoichiometric ratio of 

CBo CAo = 2 CBo C Ao( )stoich and at stoichiometric ratio of CBo/CAo = 3/2 for our example reaction.   

 

This ratio is: 

For a PFR: 

  

FP(non−stoich )

FP( stoich)

=

1.8xAV

ln
2 − xA

2(1 − xA
−

xA
2(2 − xAV

 

 
  

 
 

3.6xA
1

(1− xA )2 −1

=

 

1
(1− x A )2 −1

2 ln
2 − x A

2(1− xA

 

 
  

 
 −

x A
2(2 − xA )

 

  
 

  

 

 

Specifically for xA = 0.95 we get 

  

FP(non−stoich)

FP(stoich)

=

1
0.052 −1

2 ln
1.05

2x0.05
−

0.95
2x1.05

 
  

 
  2 ln10.5−

0.75
2.10

 
 

 
 

=
 

199.5
ln10.5− 0.45228045

=105.0  

 

 For a CSTR 
FP(non−stoich)

FP(stoich)

= 3.6(1− xA )(2− xA )2

3.6(1− xA )3 = (2 − xA )2

(1− x A )2 =

2 −0.98
1− 0.98

 
 

 
 

2 FP( non−stoich)

FP( stoich)

=
1.05
0.05

 
 

 
 

2

= 212 = 441
 

Let us examine the situation when the reaction just considered occurs at P = const, T = const in 

the gaseous phase.  Then due to stoichiometry we have  

 

2B + 3B = P + S 

υ j∑ = 1 +1− 2 − 3 = −3 
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Consider stoichiometric feed of reactants at CBo/CAo =3/2. 

yAo =
2
5

= 0.4 (−υA ) = 2 

ε A = yAo
υ j∑

(−υA )
=

0.4 −3( )

2
=−0.6 

CA = CAo
1− x A

1− 0.6xA
CB = CAo

CBo
CAo

− 3
2
x A

1− 0.6x A
 

−RA = 0.2xCAo
3 3

2
 
 

 
 

2 (1 − xA )3

(1 − 0.6xA )3 = 3.6
(1 − xA)

3

(1− 0.6xA )3  

 

CSTR  

FP =
(−RA)

2
V  

V =
2FP
−RA

=
2x10(1 − 0.6x0.95)3

3.6(1 − 0.95)3  

V =
10
1.8

(1− 0.57)3

0.053 = 44,444x0.433 = 3,534(L)
 

Tremendous reduction in required volume compared to the ε A  = 0 case occurs! 
 

PFR 

V = FAo
dxA
−RAo

xA

∫ =
2Fp
xA

(1− 0.6x)3dx
3.6(1− x)3

o

xA

∫  

V =
FP

1.8xA

(1 − 0.6x)3

(1 − x)3 dx
0

xA= 0.95

∫ =
10

1.8x0.95
1 − 06x)

1 − x
 
 
  

 

3

dx
0

0.95

∫  

V = 125.6(L) 

 

Again a significant reduction in PFR reactor volume requirement is observed. Why? 
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2.4   Graphic Comparison of PFR and CSTR 
 

V
FAo

 

 
  

 
 
CSTR

=
x A

(−RA ) exit

V
FAo

 

 
  

 
 
PFR

=
dx A
−RAo

xAo

∫
 

 

The graphic representation of the above two design equations is represented below for an n-th 

order reaction.  Clearly, for fixed feed conditions and feed rate and for chosen desired conversion 

the volume of the CSTR will always be larger than or equal to the PFR volume. 

 

1
−RA V

FAo

 

 
 

 

 
 
CSTR

=  area of box

V
FAo

 

 
 

 

 
 
PFR

=  area under the curve

x A  
 

FIGURE 2-4: Graphical Comparison of CSTR and PFR 
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Ideal Reactors and Multiple Reactions 
Isothermal Operation 

 
Selection of a proper flow pattern is the key factor in achieving desired selectivities and yields in 
multiple reactions.  For every multiple reaction system of known stoichiometry  it is possible to 
determine “a priori” which limiting flow pattern – complete backmixing (CSTR) or no mixing 
(PFR) will yield superior yields or selectivities.  The consideration of yields often is more 
important than reactor size in choosing the preferred reactor flow pattern. 
 
From Lecture 1 we know that all multiple reaction systems can be represented by a set of R 
independent reactions among the  S chemical species present in the system: 
 

 υ ij
j=1

S

∑ A j = 0 for i =1,2,3...R       (1*) 

 
These stoichiometric relationships allow one to relate moles produced (or depleted) of each 
species to the molar extents of the R reactions:  
 

 i

R

i
ijjoj XFF &∑

=

+=
1
υ         (1) 

 
The rate of reaction of each species is given through the rates of the R independent reactions, ri, i 
= 1,2,…R. 
 

 Rj = υij ri
i =1

R

∑          (2)  

 
 
 
CSTR – Ideal Stirred Tank Continuous Flow Reactor 
 

 FjFjo

Qo Q 
V 

 
 
The design equation (i.e., the mass balance for species j) can be written for R species, j = 
1,2,3…R: 
 

 Fjo − Fj + υij ri
i =1

R

∑ V = 0        (3) 

 for j = 1, 2,...R 
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If the reaction rate ri for each independent reaction i can be represented by an n-th order form, of 
eq (4a) 
 

 ∏
=

=
S

j
jii

ijCkr
1

α          (4a) 

 
 then at P = const, T = const, the rate of the i-th reaction, ri, can be represented in terms of molar 
extents iX&  of the reactions by: 
 

 

ij

ij

S

j

R

i
iijotot

R

i
iijjoS

j
ototii

XF

XF
Ckr

α

α

υ

υ

⎟⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜

⎝

⎛

+

+
∑=

∑∑

∑
∏

= =

=

=

1 1
,

1

1
,

&

&

     (4b) 

  
where αij  is the reaction order of reaction i with respect to species j,  Ftot,o is the total initial 
molar flow rate. 
 
Substitution of equations (2) and (4b) into (3) results in  set of R nonlinear equations in iX& .  
Three types of problems described below arise: 
 
a) Given the feed flow rates, reactor size V and rate forms for all reactions one can calculate 

all the reaction extents sX i '&  and from equation (1) get the composition of the outlet 
stream. 

 
In addition, from Lecture 1, at P = const, T = const: 
 

 ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+= ∑∑

= =

R

i

S

j
ototiijo FXQQ

1 1
,1 &υ      (5) 

 
The exit volumetric flow rate can be computed and effluent concentrations calculated 
 

Q
F

C j
j =          (6) 

 
b) Given the feed molar flow rates and composition, and the desired partial composition of 

the outflow, as well as the reaction rates,  one can calculate the reactor size from equation 
(3) and the composition of other species in the outflow. 

c) Given molar feed rates and outflow molar flow rates for a given reactor size the rate of 
reaction for each species can be found from equation (3). 
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PFR – Plug Flow Reactor 
 

 FjFjo 

Qo Q 
V 

 
The design equation (i.e. the  differential mass balance for species j)  can be written for R species 
 

 ∑
=

=
R

i
iij

j r
dV
dF

1
υ          (7) 

 j = 1, 2, ...R 
 
The initial conditions are 
 
 V = 0 Fj = Fjo         (7a) 
 
Using equations (1) and (4b) the above set of R first order differential equations can be 
integrated simultaneously and solved for sX i '&  as functions of V. 
 
a) Given the feed flow rate and composition, and the form of the reaction rates, one could 

determine what volume V is required to attain the desired product distribution. 
b) Given the feed and reactor volume and reaction rate forms,  one can determine the exit 

product distribution. 
 
 
 
Batch Reactor – Autoclave of Constant Volume 
 

 

 
 
The R species (for j=1, 2, 3..R) mass balances yield: 
 

 ∑
=

=
R

i
iij

j r
dt

dn

1
υ          (8) 

 
Initial conditions are: 
 
 t = 0  nj = njo        (8a) 
 
Moles and extents are related by: 
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 ∑
=

+=
R

i
iijjoj Xnn

1
υ         (9) 

 
For j = 1, 2, 3…S 
 
The rate form as a function of extents is given by 
 

 

ij

ij

jo

R

i
iij

joii n

X
C

j

s
kr

α

α
υ

⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜

⎝

⎛

+
=
Π=

∑
=11

1
      (10) 

 

 
ijR

i
iijjoii C

j

s
kr

α

ξυ ⎟
⎠

⎞
⎜
⎝

⎛
+

=
Π= ∑

=11
      (10a) 

 

where 
V
X i

i =ξ          (10b) 

 
One can solve the set of R first order differential equations to calculate the product distribution in 
time, or the desired time needed for a prescribed product distribution. 
 
The above approach, while well suited for the computer, does not provide us with the insight as 
to which flow pattern is better in a given process until we actually compute the answers for both 
limiting cases. 
 
In order to get better insight in the role of the flow pattern in product distribution in multiple 
reactions we will consider some simple systems and use the notions of yields and selectivity. 
 
Classification of Multiple Reactions 
 

parallel
⎭
⎬
⎫

=+
=+

PDC
RBA

 

ecompetitiv
2 ⎭

⎬
⎫

=+
=+

SBA
RBA

 

 

reactions)(serieseconsecutiv
⎭
⎬
⎫

=
=+
SR

RBA
 

 

reactionsmixed
⎭
⎬
⎫

=+
=+

SBR
RBA
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In Lecture 1 we have defined the various yields 
 

 { yield(relative)point

1

1

∑

∑

=

=

−
=

−
=⎟

⎠
⎞

⎜
⎝
⎛

R

i
iiA

R

i
iip

A

p

r

r

R
R

A
Py

υ

υ
 

 
Point (relative) yield measures the ratio of the production rate of a desired product P and the rate 
of disappearance of the key reactant A.  Point yield is a function of composition and this varies 
along a PFR reactor, varies in time in a batch reactor,  and is a constant  number in a CSTR. 
 

 { yield(relative)overall
AAo

PoP

FF
FF

A
PY

−
−

=⎟
⎠
⎞

⎜
⎝
⎛  

 
Overall (relative) yield gives the ratio of the overall product P produced  and the total 
consumption of reactant A. 
 
In a CSTR the overall and point yield are identical. 
 

 ⎟
⎠
⎞

⎜
⎝
⎛=

A
Py

A
PY )(  

 
In a PFR the overall yield is the integral average of the point yield: 
 

 A

F

FAAo

dF
A
Py

FFA
PY

Ao

A

∫ ⎟
⎠
⎞

⎜
⎝
⎛

−
=⎟

⎠
⎞

⎜
⎝
⎛ 1  

 
Overall operational yield is also often used,  defined as the number of moles of the desired 
product produced per mole of key reactant fed to the system. 
 

Ao

PoP

F
FF

A
P −

=⎟
⎠
⎞

⎜
⎝
⎛  

 
The relationship to overall relative yield is obvious 
 

 Ax
A
PY

A
P

⎟
⎠
⎞

⎜
⎝
⎛=⎟

⎠
⎞

⎜
⎝
⎛  

 
where xA is the overall conversion of A 
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AO

AAo
A F

FF
x

−
=  

 
None of the above yields has been normalized, i.e., their maximum theoretical value may be 
more or less than one as dictated by stoichiometric coefficients. 
 
A normalized yield can be introduced by 

 
⎟
⎠
⎞

⎜
⎝
⎛

⎟
⎠
⎞

⎜
⎝
⎛

=⎟
⎠
⎞

⎜
⎝
⎛

A
Py

A
Py

A
Py

max

 

where ⎟
⎠
⎞

⎜
⎝
⎛

A
Pymax  is obtained by assuming that only the reactions leading from A to R occur. 

Point selectivity and overall selectivity measure the ratio of formation of the desired product and 
one or more of the unwanted products, e.g. 
 

 
uou

pop

u

p

FF
FF

S
R
R

U
Ps

−

−
==⎟

⎠
⎞

⎜
⎝
⎛  

 
 
A general rule: 
 

If 0>
⎟
⎠
⎞

⎜
⎝
⎛

AdC
A
Pdy

 PFR produces more P. 

 

If 0<
⎟
⎠
⎞

⎜
⎝
⎛

AdC
A
Pdy

 CSTR produces more P 

 
 

If ⎟
⎠
⎞

⎜
⎝
⎛

A
Py  is not a monotonic function of CA either reactor type may produce more P depending 

on operating conditions.  The case of monotonic point yield is illustrated below for the case with 
0=Aε . 

 

CA CAo CA 

⎟
⎠
⎞

⎜
⎝
⎛

A
Py  

 

 
 
\  \  \  Area = Cp in PFR   
 Area = Cp in CSTR  ׀ ׀ ׀ 

 

CA CAo CA

⎟
⎠
⎞

⎜
⎝
⎛

A
Py
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I. Liquid Systems or Gases With 0
1 1

=∑∑
= =

R

i

S

j
ijυ  

 
Competitive Reactions 

 
a1A + b1B= p1P 
a2A + b2B = s2S 
 
Given the rate BA

BA CCkr 11
11

αα=  
   BA

BA CCkr 22
22

αα=  
 
Point yield then is: 

 

1

2

1

2

1

1

2211

11

1
r
r

a
a
a
p

rara
rp

R
R

A
Py

A

p

+
=

+
=

−
=⎟

⎠
⎞

⎜
⎝
⎛  

 
)()(

11

22

1

1

12121 BBAA
BA CC

ka
ka

a
p

A
Py

αααα −−+
=⎟

⎠
⎞

⎜
⎝
⎛  

 

1

1
max a

p
A
Py =⎟

⎠
⎞

⎜
⎝
⎛  

 

 
)()(

11

22 12121

1

BBAA
BA CC

ka
kaA

Py
αααα −−+

=⎟
⎠
⎞

⎜
⎝
⎛  

 

We want ⎟
⎠
⎞

⎜
⎝
⎛

A
Py  to be as high as possible.  This implies: 

 
i) BBAAif 1212 , αααα << , keep CA and CB as high as possible.  PFR is better than 

CSTR. 
ii) if α2 A = α1A,α2 B <α1B , keep CB as high as possible.  PFR is better than CSTR. 
iii) if α2 A = α1A,α2 B >α1B , keep CB as low as possible.  CSTR is better than PFR.  Try 

for yourself other combinations. 
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Example 1 
 

 A = P  RP = 1.0 CA (kmol/m3s) 
 2A = S  RS = 0.5 CA

2  (kmol/m3s) 
 
Determine Cp in a) CSTR, b) PFR. The feed contains CAo = 1 (kmol/ms), Cpo = 0.  
Conversion of 98% is desired. 
 

 

⎟
⎠
⎞

⎜
⎝
⎛=⎟

⎠
⎞

⎜
⎝
⎛=⎟

⎠
⎞

⎜
⎝
⎛

+
=

+
=

−
=⎟

⎠
⎞

⎜
⎝
⎛

A
Py

A
Py

A
Py

CRR
R

R
R

A
Py

Asp

p

A

p

1

1
1

2

max

 

 
To keep point yield as high as possible, it is necessary to keep CA low everywhere.   CSTR 
will be better than PFR.  Let us show this quantitatively. 
 
 
a) CSTR  
 
By setting the overall yield equal to the point yield we can solve for the exit concentration of 
product P. 

  
AAAo

p

CA
Py

CC
C

A
PY

+
=⎟

⎠
⎞

⎜
⎝
⎛=

−
=⎟

⎠
⎞

⎜
⎝
⎛

1
1  

 

 ( )3/961.0
98.011

98.01
)1(11

mkmolx
xC

xC
C

CC
C

AAo

AAo

A

AAo
p =

−+
=

−+
=

+
−

=  

 

Overall yield  980.0=
−

=⎟
⎠
⎞

⎜
⎝
⎛

AAo

p

CC
C

A
PY  

 

Overall operational yield 961.0=⎟
⎠
⎞

⎜
⎝
⎛

A
P  

 
Required reactor size (space time) 
 

 )(0.48
)1()1( 22 s

xCxC
xC

R
CC

AAoAAo

AAo

A

AAo =
−+−

=
−

−
=τ  
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b) PFR  
 
Product concentration is obtained by integration of the point yield  
 

 ∫∫ +
=⎟

⎠
⎞

⎜
⎝
⎛=

Ao

A

Ao

A

C

C A

A
C

C
Ap C

dC
dC

A
PyC

1
 

 

 )/(673.0
98.011

11
1
1 3mkmoln

C
C

nC
A

Ao
p =⎟

⎠
⎞

⎜
⎝
⎛

−+
+

=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+
+

= ll  

 

Overall yield 687.0=⎟
⎠
⎞

⎜
⎝
⎛

A
PY  

 

Overall operational yield 673.0=⎟
⎠
⎞

⎜
⎝
⎛

A
P  

 

Required reactor size ∫∫ +
=

−
=

Ao

A

Ao

A

C

C AA

A
C

C A

A

CC
dC

R
dC

)1(
τ  

 

 )(2.3
)11)(98.01(

98.011
)1(
)1(

sn
CC
CC

n
AA

AAo =⎥
⎦

⎤
⎢
⎣

⎡
+−

−+
=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
+
+

= llτ  

 
 
Plug flow reactor is considerably smaller but CSTR gives a better yield and higher 
concentration of the desired product. 
 
 
Example 2 

 
 A + B = P  Rp = 1.0 CACB (kmol/m3s) 
 A + A = S  Rs = 0.5 CA

2  (kmol/m3s) 
 
Given FAo = FBo = 1 (kmol/s;  CAo = CBo = 1 (kmol/m3)  CPo = CSo = 0 and desired 

conversion xA = 0.98, determine ⎟
⎠
⎞

⎜
⎝
⎛

⎟
⎠
⎞

⎜
⎝
⎛

⎟
⎠
⎞

⎜
⎝
⎛

S
PS

A
P

A
PYC p ,,,  and required reactor space time for 

a) CSTR, b) PFR. 
 
  

B

AAB

B

sp

p

A

p

C
CCC

C
RR

R
R

R
A
Py

+
=

+
=

+
=

−
=⎟

⎠
⎞

⎜
⎝
⎛

1

1
2
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To maximize point yield one should keep the reactant concentration ratio CA/CB as low as 
possible everywhere. 

Eliminate CB in terms of Cp and  CA using C j = C jo + υ ij
i =1

R

∑ ξ i i = 1,R  

 
1

21 2
ξ

ξξ
+=

−−=

PoP

AoA

CC
CC

 

 

 [ ]PAAoPoP CCCCC −−=−=
2
1

21 ξξ  

 
Now: 
 
 pBoAoB CCCC −=−= 1ξ  
 

 
[ ]

[ ]BBoAAo

pAAoSoS

CCCC

CCCCC

+−−=

−−+=+=

2
1

2
102ξ

 

 
a) CSTR 

 

ApAo

pAo

AAo

p

CCC
CC

A
Py

CC
C

A
PY

+−

−
=⎟

⎠
⎞

⎜
⎝
⎛=

−
=⎟

⎠
⎞

⎜
⎝
⎛  

 
Solve for Cp 
 

098.02

98.01)1(;1

0)()_(

2

2

=+−

−=−===

=−+−

pp

AAoABoAo

AAoBopBoAop

CC

xCCCC

CCCCCCC

 

 

ncompositiostreamexit

/061.0
/141.0
/02.0

/(859.098.011

3

3

3

3

⎪
⎪
⎭

⎪
⎪
⎬

⎫

=
=
=

=−−=

mkmolC
mkmolC
mkmolC

mkmolC

S

B

A

p

 

 

Overall yield 877.0=⎟
⎠
⎞

⎜
⎝
⎛

A
PY  

 



ChE 471 Lecture 6 October 2005 

11 

Overall operational yield 859.0=⎟
⎠
⎞

⎜
⎝
⎛

A
P  

Overall selectivity 2.14==⎟
⎠
⎞

⎜
⎝
⎛

s

p

C
C

S
PS  

Required Reactor Size 
 

 )(306
141.002.0

141.01 s
xCC

CC
R

CC

BA

BAo

B

BBo =
−

=
−

=
−

−
=τ  

 
b) PFR 

 

0,

andSince

==

+−

−
−=

==

⎟
⎠
⎞

⎜
⎝
⎛−==

pAoA

ApBo

poB

A

p

jj

A

p

A

p

CCCat

CCC
CC

dC
dC

constQQCF

A
Py

R
R

dF
dF

 

 
Rearrange: 
 

 

pBopBo

A

p

pBo

A

p

A

CCCC
C

dC
d

CC
C

dC
dC

−
−

=⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

−

−=
−

+

1

1

 

 
at Cp = 0 CA = CAo 
 
Integrate from the indicated initial condition: 
 

 
( )(*)11

1 p
p

A

Bo

pBo

Bo

Ao

pAo

A

Cn
C

C

C
CC

n
C
C

CC
C

−+=
−

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −
=−

−

l

l

 

 
Substitute known quantities: 
  

CA = CAo (1-xA) = 1-0.98 = 0.02 (kmol/m3) 
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Solve for Cp by trial and error: 
 

 
)1(2)(

0)1()1(98.0)(

pp

pppp

CnCD

CnCCC

−+=

=−−−−=

l

l

φ

φ
 

 
)(

)(1
n
p

n
pn

p
n
p CD

C
CC

φ
φ

−=+    Newton-Raphson Algorithm 

 
This yields: 
 

 ncompositiostreamExit

/184.0
/387.0

/02.0
/613.0

3

3

3

3

⎪
⎪
⎭

⎪
⎪
⎬

⎫

=
=
=
=

mkmolC
mkmolC

mkmolC
mkmolC

s

B

A

p

 

 
The last two concentrations above are evaluated using the stoichiometric relationship. 
 

Overall yield  626.0=⎟
⎠
⎞

⎜
⎝
⎛

A
PY  

Overall operational yield   613.0=⎟
⎠
⎞

⎜
⎝
⎛

A
P  

  

Overall selectivity 33.3=⎟
⎠
⎞

⎜
⎝
⎛

S
PS  

 
Required reactor space time: 
 

 ∫∫
=

=

=
−

=
1

387.0

Bo

B

Bo

B

C

C BA

B
C

C B

B

CC
dC

R
dC

τ  

 
From (*)  
 
 [ ])1(1)1( ppA CnCC −+−= l  
 
From stoichiometry 
  

ppBoB CCCC −=−= 1  
Thus 
 )1( BBA CnCC l+=  
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 du
u

ee
CnC

dC Bo

B

Bo

B

Cn

Cn

uC

C BB

B ∫∫
+

+

−=

=
+

=
=

l

ll

1

1

1

2
387.0

)1(
τ  

 

 
{ } { }

{ } )(1.62194.04679.271.2
)1()05.0()1()1( 1111

s
EEeCnECnEe BoB

=−=
−=+−+= llτ

 

 
where 
 

 integrallexponentia)(1 du
u

ezE
z

u

∫
∞ −

=  

 
E1(z) values tabulated in M. Abramowitz & A. Stegun “Handbook of Mathematical Functions”, 
Dover Press, N.Y. 1964. 
 
Comparison of CSTR & PFR 
 
Reaction System:  A + B = P (desired) 
    A + A = S 
 
Decision variables:  xA = 0.98 

    1/ ==
Ao

Bo
AB F

F
M  

 
Rate Form:   r1 = 10 CACB (kmol/m3s) 
    r2 = 0.5 CA

2 (kmol/m3s) 
 
 
     CSTR  PFR  Optimal Ideal Reactor 
Operational yield   0.859  0.613  0.950 
Overall selectivity   14.2  3.3  63.0 
Reactor space time   306 (s)  6.1 (s)  150 (s) 
 
 
The last column of the above Table was computed based on an ideal reactor model shown below.  
We have B entering a plug flow reactor while FAo is distributed from the side stream into the 
reactor in such a manner that CA = 0.02 kmol/m3 everywhere in the reactor.  
 

 

PFR 
FBo 

FAo 
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From the expression for the point yield 
 

 

B

AAB

B

C
CCC

C
A
Py

+
=

+
=⎟

⎠
⎞

⎜
⎝
⎛

1

1  

 
it is clear that one needs to keep CA low and CB high.  With the constraint of FAo = FBo the above 
ideal reactor accomplishes that requirement in an optimal manner. 
 
Could such a “porous wall” reactor with plug flow be constructed?  It depends on the nature of 
the reaction mixture. 
 
However, we learn from the above that with our choice of decision variables maximum 
selectivity is 63, we can never do better than that!  We also learn that a good reactor set up is a 
cascade of CSTR’s. 
 

FBo 

FAo 

 
 
The total number of reactors used will depend on economics  With 2 reactors we get selectivity 
of over 20, with five we are close to optimum. 
 
 
Examining the effect of decision variables we see that Cp increases with increased conversion of 
A.  For conversions larger than 0.98 the reactor volume becomes excessive. 
 
If we took MB/A > 1 that would improve the yield and selectivity but at the expense of having to 
recycle more unreacted B. 
 
Let us ask the following question.  How much excess B would we have to use in a PFR in order 

to bring its overall selectivity to the level of a single CSTR i.e., 2.14==
s

p

C
C

S  at CAo = 1 

(kmol/m3) and xA = 0.98.  So the goal is to choose BoC  in order to get at the exit of plug flow: 
 

 2.14=
s

p

C
C

 

 
From stoichiometry: 
 

 [ ] [ ] [ ]ppAAopAAos CCxCCCCC −=−=−−= 98.0
2
1

2
1

2
1  
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The prescribed desired selectivity is: 
 

 

)/(061.0

)/(859.02.14
98.0
2

3

3

mkmolC

mkmolC
C

C

s

p
p

p

=

=⇒=
−  

 
The integrated equation for PFR is: 

 ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−=−

− Ao

p

Bo

Ao

pBo

A

C
C

n
C
C

CC
C

1l  

 
The initial concentration of B is now the only unknown.  Evaluate it by trial & error. 
 

 

379.3

gives859.011
859.0

02.0

m
kmolC

C
n

CC

Bo

BoBoBo

=

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−=−

−
l

 

 
Since CAo = l (kmol/m3),  MB/A = 3.79 – almost four times more B than A should be introduced 
in the feed to get the selectivity in a PFR to the level of a CSTR. 
 
A great excess of unreacted B has to be separated in the effluent: 
 
 CB = CBo – Cp = 3.790-0.859 = 2.931 (kmol/m3) 
 
Consecutive Reactions 

aA = p1P 
p2P = s S 

 
Two basic problems arise: 
 
a)  conduct the reaction to completion, 
b)   promote production of the intermediate. 
 
The first problem is trivial and can be reduced to a single reaction problem.  Use the slowest 
reaction in the sequence to design the reactor. 
 
In order to maximize the production of intermediates PFR flow pattern is always superior to a 
CSTR flow pattern.   
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α

β

A

P

A

p

Ckp
Ckp

r
r

p
p

A
Py

a
p

A
Py

r
r

a
p

a
p

ra
rprp

R
R

A
Py

11

22

1

2

1

2

1
max

1

221

1

2211

11 −=−=⎟
⎠
⎞

⎜
⎝
⎛

=⎟
⎠
⎞

⎜
⎝
⎛

−=
−

=
−

=⎟
⎠
⎞

⎜
⎝
⎛

 

 
One needs to keep CA high and Cp/CA low which is best accomplished in a PFR. 
 
Example 1 
 A = P   r1 = 1.0 CA (kmol/m3s)  α = 1 
 P = S   r2 = 0.5 CP (kmol/m3s)   β =1 
 
Starting with CAo = 1 (kmol/m3) and CPo = Cso = 0 find the maximum attainable CP in  
a) CSTR, b) PFR. 
 
We could continue to use the point yield approach. 
 
CSTR Stirred Tank Reactor 
 

( ) ( )AAo
A

PA
AAoP CC

C
CCCC

A
PyC −

−
=−⎟

⎠
⎞

⎜
⎝
⎛=

5.0  

 
Solve for CP 
 

 
)(5.0
)(

AAo

AAoA
P CC

CCC
C

+
−

=  

 
Find optimal CA at which the CSTR should operate. 
 

 
02

0)())(2(0

22 =−+

=−−+−⇒=

AoAAoA

AAoAAAoAAo
A

P

CCCC

CCCCCCC
dC
dC

 

 [ ] )/(414.012 3mkmolCC AoAopt
=−=  

 )/(343.0
)414.01(5.0
)414.01(414.0 3

max
mkmolCP =

+
−

=  

 3/243.0 mkmolCCCC PAAoS =−−=  

Overall yield   585.0=⎟
⎠
⎞

⎜
⎝
⎛

A
PY  
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Operational yield  343.0=⎟
⎠
⎞

⎜
⎝
⎛

A
P  

Overall selectivity  4.1=⎟
⎠
⎞

⎜
⎝
⎛

S
PS  

Required reactor space time: 
 

 )(4.1
414.0

414.01 s
C

CC

R

CC

opt

optopt

A

AAo

A

AAo
=

−
−

−
=

−

−
=τ  

 
b) PFR  Plug Flow Reactor 

 
A

AP

A

P

C
CC

A
Py

dC
dC −

=⎟
⎠
⎞

⎜
⎝
⎛−=

5.0  

 
at  CA = CAo,    CP = 0 
 

 

AA

P

A

A

p

A

P

CC
C

dC
d

C
C

dC
dC

1

1
5.0

−==
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

−=−

 

 [ ]AAo
A

P CC
C

C
−= 2  

 [ ]AAoAP CCCC −= 2  
 
Find CA at the reactor exit by 
 

 

)/(25.0
4

020

3mkmolC

C
C

CC
dC
dC

opt

opt

A

Ao
A

AAo
A

P

=

=

=−⇒=

 

 [ ] )/(5.025.0125.02 3
max

mkmolCP =−=  

 )/(25.025.05.01 3mkmolCs =−−=  
 

Overall yield  667.0
3
2

==⎟
⎠
⎞

⎜
⎝
⎛

A
PY  

Operational yield 5.0=⎟
⎠
⎞

⎜
⎝
⎛

A
P  
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Overall selectivity 0.2=⎟
⎠
⎞

⎜
⎝
⎛

A
PS  

 
Required space time: 
 

 )(39.1224 snn
C
C

n
C
dC

opt

Ao

optA A

Ao
C

C A

A ===== ∫ lllτ  

 
The same results can be obtained by using the design equations  (i.e. mass balance)for P & A. 
 
CSTR 

)5.01)(1(5.015.0

1

ττ
τ

τ
τ

τ

τ
τ

++
=

+
=

−
=

+
=

−
=

AoA
P

PA

P

Ao
A

A

AAo

CCC
CC

C

C
C

C
CC

 

 

etc.),(4.1gives0 s
d

dC
opt

p =⇒= τ
τ

 

 
PFR 

 

PA
P

AoA

AoAA
A

CC
d

dC
CC

eCCC
d

dC

5.0

1,0

−=

===

=−= −

τ

τ
τ

τ

 

 

 

etc.,220

)(2

)(

00

5.0

5.05.05.0
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d

dC
eeC

eCeeCCe
d
d

C
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P

P

AoAoP

P

l=⇒=

−=

==

==

−−

−−

τ
τ

τ

τ

ττ

ττττ
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Mixed Reactions 
 
This is the most frequently encountered type of multiple reactions which can be viewed as a 
combination of competitive and consecutive reactions.  We can solve the problems involving 
these reactions either by setting R design equations for R components or by utilizing the concept 
of the point yield in simpler reaction schemes. 
 
Example 1 
 
 2A + B = R   -RA = 2k1 CA CB (kmol/m3min) 
 
 2B + R = S   Rs = k2 CB CR (kmol/m3min) 
 
k1 = 10 k2 = 1 (m3/kmol min).  R is the desired product.  Find CR in a) CSTR, b) PFR, when CRo 
= Cso = 0.  Decision variable CAo = CBo = 1 (kmol/m3). 
 
We can write two point yields: 
 

 

RA

RA

RBBA

RBBA

B

R

A

R

BA

RBBA

A

R

C
k
k

C

C
k
k

C

CCkCCk
CCkCCk

R
R

B
Ry

C
C

k
k

CCk
CCkCCk

R
R

A
Ry

1

2

1

2

21

21

1

2

1

21
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1
2
1

2

+

−
=

+
−

=
−

=⎟
⎠
⎞

⎜
⎝
⎛

⎥
⎦

⎤
⎢
⎣

⎡
−=

−
=

−
=⎟

⎠
⎞

⎜
⎝
⎛

 

The point yield y
R
A

⎛ 
⎝ 

⎞ 
⎠  depends only on CR and CA and is simpler to use. 

 
a) CSTR  Stirred Tank Reactor 

 ( ) ( )AAo
A

RA

AAoR CC
C

C
k
k

C
CC

A
RyC −

−
=−⎟

⎠
⎞

⎜
⎝
⎛=

2
1

2

 

 

 
AoA

AAoA

AoA

AAoA
R CC

CCC

C
k
k

C
k
k

CCC
C

1.09.1
)(

2

)(

1

2

1

2 +
−

=
+⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−

−
=  

 
Find optimum CA in a CSTR. 
 

 0220 2

1

2

1

22

1

2 =−+⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−⇒= AoAAoA

A

R C
k
k

CC
k
k

C
k
k

dC
dC  
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12

2

1 +

=

k
k

C
C Ao

Aopt
 

 )/(183.0
1102

1 3mkmol
x

C
optA =

+
=  

 

 )/(334.0
1.0183.09.1
)183.01(183.0 3

max
mkmol

x
CR =

+
−

=  

 
From stoichiometry 
 

 ( ) 334.02183.01
2
312)(

2
3 xCCCCC RAAoBoB +−−=+−−−  

 334.0)01831(
2
1)(

2
1

−−=−−= RAAoS CCCC  

 )/(0745.0;)/(443.0 33 mkmolCmkmolC SB ==  
 

Overall yield  600.0;409.0 =⎟
⎠
⎞

⎜
⎝
⎛=⎟

⎠
⎞

⎜
⎝
⎛

B
RY

A
RY  

Operational yield 334.0;334.0 =⎟
⎠
⎞

⎜
⎝
⎛=⎟

⎠
⎞

⎜
⎝
⎛

B
R

A
R  

Overall selectivity 5.448.4 ==⎟
⎠
⎞

⎜
⎝
⎛

S
RS  

 
Required reactor space time: 
 

 (min)0.5
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183.01
2 1

=
−

=
−

=
xxxCCk

CC
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b) PFR  Plug Flow Reactor 
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For optimal CA at reactor exit: 

 ⎟⎟
⎟
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 )/(0427.0)05.0( 395.0
1

mkmolC
optA ==  

 

 )/(427.0
9.1

0427.00427.01 3
05.095.0

max
mkmolxCR =

−
=  

 

 )/(418.0427.02)0427.01(
2
31 3mkmolxCB =+−−=  

 

 )/(0517.0427.0)0427.01(
2
1 3mkmolCS =−−=  

 

Overall yield  734.0;446.0 =⎟
⎠
⎞

⎜
⎝
⎛=⎟

⎠
⎞

⎜
⎝
⎛

B
RY

A
RY  

Operational yield 427.0;427.0 =⎟
⎠
⎞

⎜
⎝
⎛=⎟

⎠
⎞

⎜
⎝
⎛

B
R

A
R  

Overall selectivity 3.827.8 ==⎟
⎠
⎞

⎜
⎝
⎛

S
RS  

 
Reactor space time: 
 

 ∫=
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A

C

C BA

A

CC
dC
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τ  

 
From stoichiometry 
 

 ( ) RAAoBoB CCCCC 2
2
3

+−−=  

 
but all along the PFR 
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1
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A
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τ  

 
Caution must be exercised when using the point yield concept and finding maximum 
concentrations in mixed reactions.  Sometimes formal answers will lie outside the 
physically permissible range if the other reactant is rate  limiting. 
 
For example in Example 1 if we take 
 

 CAo = 2
kmol
m3

⎛ 
⎝ 

⎞ 
⎠ ; CBo =1

kmol
m3

⎛ 
⎝ 

⎞ 
⎠  

 
We are feeding the reactants in stoichiometric ratio for reaction 1. 
 
Following the above described procedure in a CSTR we would find 
 

 
)/(668.0

2.0366.09.1
)366.02(366.0

)/(366.0
1102

3

3
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mkmol

x
C

mkmol
x
C

C
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=
+

−
=

=
+

=
 

 
However these values are not attainable since from stoichiometry it follows that: 
 

 0115.0668.02)366.02(
2
31 <−=+−−= xCB  

 
This indicates that B is not introduced in sufficient amount to allow the reactions to proceed to 
that point. 
 
If CBo = 1.115 (kmol/m3) then the above CRmax  can be obtained (theoretically) at CB = 0 and that 
would require an infinitely large reactor. 
 
Thus the maximum reactor size that is allowed would determine CBmin

.  Say CBmin
=0.01 

(kmol/m3) (99% conversion of B). 
 
Calculate the resulting CA and CR from 
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That yields: 
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Overall yield  667.0;429.0 =⎟
⎠
⎞

⎜
⎝
⎛=⎟

⎠
⎞

⎜
⎝
⎛

B
RY

A
RY  

Operational yield 660.0;330.0 =⎟
⎠
⎞

⎜
⎝
⎛=⎟

⎠
⎞

⎜
⎝
⎛

B
R

A
R  

Overall selectivity 0.6=⎟
⎠
⎞

⎜
⎝
⎛

S
RS  

Reactor space time: 
 

 min170
01.0461.012

461.02
=

−
=

xxx
τ  

 
II. Systems with change in total volumetric flow rate gasesA )0( ≠ε  

Same approach may be used but one needs to deal with iX &
&   extents rather than concentrations.  

Use relationships from Lecture 1. 
 
 
Summary 
 
PFR promotes more reactions of higher order with respect to reactions of lower order. 
 
CSTR favors reactions of lower order with respect to those of higher order. 
 
In consecutive reactions better yields are achieved always in PFR than in a CSTR for an 
intermediate product. 
 
Select judiciously the objective function to be optimized. 
 
Remember:  Optimizing overall yield does not necessarily lead to  the same result as maximizing 
the production rate (or concentration) of the desired product or as maximizing selectivity. 
 
Be aware of the relationship of the design equations and reaction stoichiometry.  
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NONISOTHERMAL OPERATION OF IDEAL REACTORS 
Continuous Flow Stirred Tank Reactor (CSTR) 

 

To

Fjo, Qo

T
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Tmo

V

Tm

To

Fjo, Qo

T

Fj

Tmo

V

Tm

or

 
Figure 1: Schematic of CSTR with jacket and coil 
Assumptions:   
 
Homogeneous system 

a) Single Reaction υ j Aj
j =1

s

∑ = 0  

b) Steady state 
 
A CSTR is always assumed perfectly mixed so that the concentration of every species is uniform 
throughout the reactor and equal to the concentration in the outflow.  Due to assumption of perfect 
mixing the temperature, T, throughout the reactor is uniform and equal to the temperature of the 
outflow.  The only difference between an “isothermal” CSTR treated previously and the general case 
treated now, is that now we do not necessarily assume that reactor temperature, T, and feed temperature, 
To, are equal. 
 
A CSTR can be jacketed or equipped with a cooling (heating) coil. 
 
Two basic types of problems arise: 
 
1. Given feed composition and temperature, rate form and desired exit conversion and temperature find 

the necessary reactor size to get the desired production rate and find the necessary heat duty for the 
reactor. 

 
2. Given feed conditions and flow rate and reactor size together with cooling or heating rates, 

determine the composition and temperature of the effluent stream. 
 
To solve either of the above two problems we need to use both a species mass balance on the system and 
the energy balance. 
 
Consider a single reaction 
 

 υ j Aj
j =1

s

∑ = 0          (1) 

or 
 aA + bB = pP         (1a) 
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Suppose the reaction is practically irreversible and the rate of reaction, which is a function of 
composition and temperature is given by: 
 

 ⎟
⎠
⎞

⎜
⎝
⎛= −

sm
kmolCCekr BA

RTE
o 3

/

32143421
βα        (2) 

 
Arrhenius   concentration dependence 
Temperature   n-th order reaction  n = α + β  
Dependence of the rate 
 
For a single reaction we can always eliminate all concentrations in terms of conversion of the limiting 
reactant A (Lecture 1). 
 
For liquids 
 

 
Ao

jo
AjA

A

j
AjAoj C

C
MxMCC =⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−= // ;

υ
υ

 

For gases 

 
o

o

AA

A
A

j
Aj

Aoj TP
PT

x

xM
CC

⎟⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜

⎝

⎛

+

−
=

ε
υ
υ

1

/

 

where 

 
)( A

j
AoA y

υ
υ

ε
−

= ∑  

 
In a CSTR we assume Po = P = const i.e constant pressure. 
 
The rate now becomes: 
 
For liquids 

 ( )
β

αβα ⎟
⎠
⎞

⎜
⎝
⎛ −−= +−

AABAAo
RTE

o x
a
bMxCekr /

)(/ 1     (3a) 

 
For gases 

 ( )
( ) βα

β
α

βα

ε
βα +

+−

+

⎟
⎠
⎞

⎜
⎝
⎛ −−

+⎟
⎠
⎞

⎜
⎝
⎛=

AA

AABA

Ao
oRTE

o x

x
a
bMx

C
T
T

ekr
1

)1( /
/    (3b) 

 
Recall that at steady state the basic conservation equation is: 
 
 Rate of input( )− Rate of output( )+ Rate of generation by reaction( )= 0 (4) 
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Apply equation (4) to mass of species A:  (or to any species j) 
 
   FAo − FA + υArV = 0; Fjo − Fj + υ j rV = 0 
 
 0== arVxF AAo  
 
 τarxC AAo =          (5) 
 
 rVX =&          (5a) 
 
where 

 τ =
V
Qo

 

 
The energy balance of course cannot contain a generation term (in absence of nuclear reactions) and 
hence can be written as: 
 

 0~~
11

=+− ∑∑
==

qHFHF j

s

j
jjo

s

j
jo &        (6) 

 

⎟
⎠
⎞

⎜
⎝
⎛

s
jkmolFjo  - molar flow rate of species j in the feed 

⎟
⎠
⎞

⎜
⎝
⎛

s
jkmolFj  - molar flow rate of species j in the outflow 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
jkmol

JH j
~  - virtual partial molal enthalpy of species j in the outflow mixture 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
jkmol

JH jo
~ - virtual partial molal enthalpy of species j in the feed 

⎟
⎠
⎞

⎜
⎝
⎛

s
Jq&            -  rate of heat addition from the surroundings i.e from the jacket or coil to the  

             reaction mixture in the reactor 
 
The energy balance given by equation (6) is not general in the sense that the following assumptions have 
already been made in order to present it in that form: 
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Assumptions involved in deriving eq (6): 
 
1. Potential energy changes are negligible with respect to internal energy changes. 
2. Kinetic energy changes are negligible with respect to internal energy changes. 
3. There is no shaft work involved i.e the only work term is the expansion (flow) work. 
 

The virtual partial molal enthalpy, 
  
÷ H j

J
mol j

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ , is defined by: 

 

 j

s

j
jtot HFHm ~

1
∑

=

=&  

 

⎟
⎠
⎞

⎜
⎝
⎛

s
kgmtot&  - mass flow rate of the mixture 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
kg
JH  - enthalpy per unit mass of the mixture 

 
In principle the virtual partial molal enthalpy can be evaluated by the following procedure (for gases): 
 

( ) )],(),,([],),([,,~
~~

*

~~~
*

*
PTHyPTHPTHPTHdTCHyPTH

jjj

T

T
jjj

fjjj
o j

−+−++Δ= ∫o  

o
jf

H
~

Δ  - standard enthalpy of formation for species j at the pressure Po of standard state and temperature 

To (enthalpy of 1 kmole of pure j at To, Po) 

 

dTC
T

T
fo j

∫ *~
 - change in enthalpy of species j, if it behaved as an ideal gas, due to change in temperature 

from standard state temperature oT to the temperature of interest T.  C
~ p j

*
 is the specific heat of j in ideal 

gas state.  In reality o
pjC  data for real gases obtained at atmospheric or lower pressures can be used. 

 

    
Δ H

~ f j
o
+ C f j

* dT = H
~ j

*

T o

T

∫ (T,P o ) enthalpy per mol of j for pure j, if it behaved like an ideal gas, at T and Po.  

Since enthalpy of an ideal gas does not depend on pressure this is also the enthalpy per kmol of j, if it 
were an ideal gas, at T and P, 

  
H
~ j

* (T, P ). 

 
),(),( *

~~
PTHPTH

jj
−  = pressure correction factor i.e the difference between the enthalpy of j being a 

real gas at T, P, ),((
~

PTH
j

 and enthalpy of j being an ideal gas at T, P ( ),(*

~
PTH

j
). 
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Frequently the pressure correction is read off appropriate charts and is given by: 
 

rr PT

cj

jj

cjjj T

HH

TPTHPTH

,

~

*

~

~

*

~

),(),(

⎟⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜

⎝

⎛ −

−=−  

Where 
 
 Tcj – critical temperature of species j. 
 

 
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛ −

cj

jj

T

HH
~

*

~  is the correction read off the charts at appropriate reduced temperature Tr =
T

Tcj

 and 

reduced pressure Pr = 
P
pcj

 

 
Pcj – critical pressure of species j. 
 
Finally 
 
 

  
H
~ j T,P, y j( )− H

~ j(T,P) = π j  is the correction factor which accounts for the nonideality of the 

mixture. 
_________________________________________________________________________ 
For liquids (in a first approximation) 
 

 j

T

T
pjfj dTCHH

o
j

π++Δ= ∫o
~

~   

 
Here we will assume: 
 
Gases:  
 
a. ideal mixtures π j = 0  
b. ideal gas behavior H

~
= H

~ j
*  

 
Liquids:   
 
a. ideal mixture π j =0 
 
Now the energy balance of eq (6) based on the above assumption can be written as 
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 qXHdTCF
Tj

o

rp

T

T

s

j
jo && =Δ+∫∑

=
~1

       (7a) 

 

 qXHdTCF
oTj

o

rp

T

T

s

j
j && =Δ+∫∑

=
~1

       (7b) 

where 

 
  
ΔHrT

= υ jΔ H
~ f j

o

j=1

s

∑ + υ j
j=1

s

∑ Cp j

T o

T

∫ dT  

 
is the heat of reaction at temperature T. 
 
Finally, in preliminary reactor design we assume that the heat of reaction does not vary much with 
temperature 
 
 

ToT rrr HHconstH Δ≈Δ≈≈Δ  

and that some mean value of the specific heat can be used 
 

 )(
~

~
op

T

T
p TTCdTC

j

o

j
−=∫  

 
Equations (7) can then be written as: 
 

 qXHTTCF rop

s

j
jo j

&& =Δ+−∑
=

)(
~1

 

or 
 ( ) ( ) 0=+Δ−+− qXHTTQC rop &&ρ       (8) 
where 

 
)()( A

AoAo

A

AAo xQCxF
X

υυ −
=

−
=&  

 

 
)( A

r
r

H
H

A υ−
Δ

=Δ  

 
ΔHr  - heat of reaction for the stoichiometry as written 
 
ΔHrA

 - heat of reaction per mole of A. 
 
 ( ) 0)( =+Δ−+− qxQCHTTQC AoAorop A

&ρ      (9) 
or 
   ρC pQ(To − T ) + (−ΔHr )rV + ś q = 0      (9a) 
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This final form of the energy balance resulting from all of the above assumptions can be interpreted as a 
“heat balance” i.e as rate of input of sensible heat by the flowing stream minus rate of output of sensible 
heat by exit stream plus heat generated by reaction plus heat added from the surroundings must add to 
zero. 
 
In addition we now need an energy balance on the jacket or coil and a constitutive relationship for heat 
transfer rate, q& . 
 
For a jacket at steady state (assuming that the jacket is well mixed too) 
 
   ρmQm C pm

(Tmo
− Tm ) − ś q = 0       (10) 

 
mpmm CQ,ρ  - are density, volumetric flow rate and mean specific heat of the fluid flowing through the 

jacket. 
 

omT  - inlet jacket temperature. 
Tm – exit jacket temperature. 
 
Let 
 )( TTUAq m −=&         (11) 
 

 ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

sCm
JU o3

 - overall heat transfer coefficient. 

 
 
 A (m2) – area for heat transfer between reactor and jacket. 
 
From eq (10) 
 

 
m

mm
m

TT
T o

κ
κ

+

+
=

1
        (12) 

where 

 
mpm

m QC
UA

m
ρ

κ =  

 
For a coil with plug flow of heating/cooling medium: 

 )( mm
m TT

dz
dT

−= κ         (13) 

 
 

omm TTz == 0         (13a) 
 
z = fractional length of the coil. 
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 )()( TTeTzT
o

m
m

z
m −+= −κ        (14) 

 
 
For an n-th order irreversible reaction G(T) always has a sigmoidal shape and at high temperatures tends 
to a horizontal asymptote CAo. 

 
Finally, in dimensionalized form the two equations that have to be solved simultaneously are: 
 
 τraxC AAo =          (15) 

 ( ) 0~
=−−+− moAo TTraTT ωτβ       (16) 

 
where r is given by equation (3) and 
 

 ˜ β A =
−ΔHrA

ρC p

⎛ 

⎝ 
⎜ ⎞ 

⎠ 
⎟  

 

 ω =
κ

1 +κ m

=
UA

ρm Cpm
Qm +UA

ρmCpm
Qm

ρC pQ
  for a jacketed reactor 

 

 ω =
κ
κ m

1 − e−κ m( )     for a reactor with coil 

 

 κ m =
UA

ρm Cpm
Qm

κ =
UA

ρCpQ
 

 
 
When we deal with problems of type 1, to find reactor size for given feed and product stream conditions 
we use directly eq (15). 
 

 τ =
V
Qo

=
CAo xA

ar
=

CAo xA

−RA

 

 
Then calculate the desired heating or cooling rate from eq (16) 
 
 ( ) ( ) VraHTTQCq

Arop Δ−+−=− ρ&  
 
 
When we deal with problems of type 2 and try to find the operating conditions for a given reactor, then 
we must solve eqs (15) and (16) simultaneously by trial and error for xA and T. 
 
Sometimes we can solve explicitly for xA from eq (15) in terms of temperature xA = xA(T). 
 
Substituting this relationship into eq (16) we get 
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 To − T + β AarTτ − ω(T − Tmo
) = 0 

 
rT indicates that the rate is now a function of temperature only since r (xA,T) = r (xA(T),T) 
 

{ AAo
TG
T

A

mo

TL

A

xCar
TT

T o ==
+

−
+

)(

)(

~~
1 τ

β

ω

β
ω

321

      (15) 

 
Reactor operating temperature is given by the intersection of the straight line L(T) and curvilinear 
function G(T). 
 
 
For an n-th order irreversible reaction G(T) always has a sigmoidal shape and at high temperatures tends 
to a horizontal asymptote AoC . 
 
For an endothermic reaction ΔHr > 0 ⇒ ˜ β A < 0  and line L has a negative slope. 
 

AoC

G

L

AAo xC

AAo xC

G
L

T TTo + ωTmo

1+ ω

− slope =
1+ ω

β A

 
 
Figure 2: Operating point for an endothermic reaction in a CSTR. 
 
Several conclusions can be reached for endothermic reactions: 
 
i) L & G can intersect at most once and for a given set of parameters only one steady state exists. 
ii) For a given reactor and flow rate, fixed τ , given feed, To

,
 and heating medium feed temperature, 

Tmo
, and given heat transfer properties, ω , the more endothermic the reaction, the larger ˜ β A  and 

the smaller the slope of the L line, therefore the lower the operating temperature and conversion. 
iii) For a fixed reaction, feed flow rate and composition and given reactor, fixed G curve, an increase 

in feed temperature moves the L-line to the right while its slope remains unchanged.  Hence, the 
operating T and xA are increased. 

 
For an exothermic reaction ΔHr < 0 and ˜ β A > 0.  The L-line has a positive slope. 
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G

L

AAo xC

AAo xC

T TTo + ωTmo

1+ ω

slope =
1+ ω

β A

1

2

3

 
 

Figure 3: Operating point(s) for an exothermic reaction in a CSTR. 
 
Several conclusions can be reached for exothermic reactions: 
 
i) L & G can intersect sometimes at more than one place and for a given set of conditions, more 

than one steady state may be possible. 
ii) For fixed τ  and reaction, fixed G, an increase in the feed temperature moves the L line to the 

right increasing the operating T and xA.  An increase in coolant Tmo
 has the same effect. 

iii) For a fixed τ  and reaction, fixed G, ˜ β A , an increase in heat removal, increase in ω , rotates the 
L-line in the counterclockwise direction and moves the intercept at the abscissa to the left if 
To > Tmo

or to the right if Tmo
> To . 

 
For exothermic reactions it is important to calculate the adiabatic temperature rise and the maximum 
adiabatic ΔT . 
 
From eq (16) with ω ≡ 0  
 
 (T − To )ad = ˜ β ACAo xA         (18) 
 
 ΔTad . max = ˜ β ACAo         (19) 
 
Maximum fractional temperature rise is also called the Prater number, β . 
 

 β =
ΔTad. max

To

=
˜ β ACAo

To

        (20) 

Now let us consider a number of simple illustrative examples. 
 
Example 1. 
 
The following information is given. 
 
Irreversible reaction A →R 
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 −RA = e25e−20,000 / RTCA
mol

Lmin
⎛ 
⎝ 
⎜ ⎞ 

⎠ 
 

 

)(500

000,100

773501

CL
calC

Amol
calH

CKT
L

molC

p

R

oAo

A

o

oo

=

−=Δ

==⎟
⎠
⎞

⎜
⎝
⎛=

ρ

 

 
CSTR 
 
a. Isothermal.  Find reactor space time needed for xA = 0.9 at 350˚K and heat to be removed. 
 

 

)(

)(
min3659.38

0233.0
9.09.01

300987.1
000,20

25

ARAAoAAo

Rop

xA

AAo

A

AAo

HxCQxFX

HXTTCQq

ee

x
R
xC

R
CC

Δ==

Δ+−=

==

==
−

=
−

−
=

−

ρ

ρ

τ

τ

&

&&

  

 

 )()(
min ARAAoop HxCQTTCQcalq Δ+−=⎟

⎠
⎞

⎜
⎝
⎛ ρ&  

 

 ( ) LcalxHxCTTC
L

cal
Q
q

ARAAoop /000,90000,1009.01)()( −=−=Δ+−=⎟
⎠
⎞

⎜
⎝
⎛ ρ

&
 to be removed. 

Note that the reaction rate at 350K is only ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
min

0233.0
L
mol  

 
b. Adiabatic 
 
Find τ  for xA = 0.9. 
 
  

( )

)257(5309.0
500

1000,100350

)()(

CKxT

x
C

CH
TT

xCQHTTCQ

A
p

AoR
o

AAoRop

A

A

o=+=

Δ−
+=

Δ=−

ρ

ρ
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sx
ee

x
R
xC

R
CC

x
A

AAo

A

AAo

133.0min1021.2

407
9.09.01

3

530987.1/000,2025

==

==
−

=
−

−
=

−

−

τ

τ
 

 
Note that at 530K the reaction rate has increased by orders of magnitude to 
 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=−

min
407

L
molRA  

 
Nonisothermal 
 
Find Qq /, &τ  given desired 9.0=Ax  and desired KT 400= . 
 

 ( )min06.1
849.0

9.09.0

400987.1
000,20

25

===
−

=
−

xA

AAo

ee
R
xC

τ  

 

 
Lcal

HxCTTC
Q
q

ARAAoop

/000,65000,90000,25
)000,90()350400(500

)()(

−=−=
−+−=

Δ−+−= ρ
&

 

 
Note the value of the rate which is 
 

⎟
⎠
⎞

⎜
⎝
⎛=−

min
849.0

c
kmolRA  

 
 
Example 2 
 
A well stirred bench scale reactor (CSTR) is used for a first order exothermic reaction A → R  
(practically irreversible) under the following conditions: 
 

 

  

τ =1.0(min)
CAo =1.0(mol / liter) ; To = 350K

Tmo = 350K ; ω =1.0 =
UA

ρmCpmQm + UA
•

ρmCpmQm

ρCpQ

÷ β A = 200 K lit
mol

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ =

(−ΔHRA
)

ρC p

r = e25e
−

20,000
RT CA

mol
lit min

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 
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a) Find the operating temperature and exit conversion. 
b) How many steady states are possible under these conditions? 
c) What is the maximum adiabatic temperature rise? 
d) How would you change some of the operating conditions (Tmo, To, ω ) in order to operate at a unique 

steady state of high conversion. 
e) What start up program should one use in order to have the reactor settle in the steady state of high 

conversion? 
 
Solution 
Solve simultaneously eqs (15) & (16) 
 
 ττ )1(/

0
1

AAo
RTE

AAo xCekraxC −== −      (15) 
   k0 = e25 E = 20,000 cal / mol  
 

 ττ
β
ω

β
ω )1(~~

1 /
0 AAo

RTE

A

moo

A

xCekra
TT

T −==
+

−
+ −     (16) 

 
Eliminate xA from (15). 
 

 
τ

τ
RTE

RTE

A ek
ek

x /
0

/
0

1 −

−

+
=  

Substitute into eq (16) 
 

 
44 344 21444 3444 21

G

RTE
Ao

RTE
o

L

A

moo

A ek
CekTT

T
τ

τ
β
ω

β
ω

/
0

/

1~~
1

−

−

+
=

+
−

+  

 
Substitute in the values of parameters: 
 

 11

987.1
000,2025exp1

9877.1
000,20exp

200
3501350

200
11 xx

T

TxT

⎭
⎬
⎫

⎩
⎨
⎧ −+

⎭
⎬
⎫

⎩
⎨
⎧−

=
+

−
+  

 (*)

987.1
000,2025exp1

987.1
000,2025exp

5.301.0

⎭
⎬
⎫

⎩
⎨
⎧ −+

⎭
⎬
⎫

⎩
⎨
⎧ −

=−

T

TT  

Solve * by trial and error for T.  Then obtain the corresponding conversion by: 
 

 (**)

987.1
000,2025exp1

987.1
000,2025exp

⎭
⎬
⎫

⎩
⎨
⎧ −+

⎭
⎬
⎫

⎩
⎨
⎧ −

=

T

TxA  
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We can also represent equation (*) graphically as shown below: 
 

Example 1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

320 340 360 380 400 420 440 460 480 500

Temperature, K

X A

 
 

 
Figure 4: Operating points for the CSTR of Example 2. 
 
  
 
Figure 5 on next page shows the dramatic temperature excursions that the reactor can experience during 
start-up before it settles to a steady state. 
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Error!  
 

 
 
Figure 5: Transient CSTR operation for Example 2 
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a) There are three intersections of the L and G line indicating 3 possible steady states. 
 

(1) 
  

T = 353K
xA = 0.03

⎧ 
⎨ 
⎩ 

  

(2) 
  

T = 408K
xA = 0.576

⎧ 
⎨ 
⎩ 

  

(3) 
  

T = 439K
xA = 0.886

⎧ 
⎨ 
⎩ 

 

 
b) Three steady states are possible. 
 

c) 
ΔTad max = ˜ β ACAo = 200x1 = 200K

Tad max = To + ΔTad max = 550K!
 

d) Increase To or Tmo to bypass the lower bump in the curve.  Increase ω  if possible. 
e) See attached Figure 5. 
 
 
Reversible Reactions 
 
For reversible reactions the effect of temperature on equilibrium must be considered. 
 
For endothermic reactions, ΔHr > 0 , equilibrium conversion increases with increased 
temperature. 
 
 

 Ax  
eAx  

I  

II

III

T  
Figure 6: Equilibrium conversion as function of temperature for endothermic reactions. 
 
In region III the reaction can be considered practically irreversible.  In region II xAe rises with 
increase in T. 
 
For endothermic reactions the maximum permissible temperature is always the optimal 
temperature for maximizing conversion or production rate from a given CSTR. 
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The net rate of an endothermic reaction at fixed composition always increases with increased 
temperature. 
 

 

21

1

/
20

1

/
10

since

21

EE

CekCekr
s

j
j

RTE
s

j
j

RTE jj

>

−= ∏∏
=

−

=

− βα

 

 
For exothermic reactions, ΔHr < 0 , equilibrium conversion decreases with increased 
temperature. 
 

 Ax  
eAx  

I  

II

III

T  
Figure 7: Equilibrium conversion as function of temperature for exothermic reactions. 
 
Again in region I the reaction is practically irreversible.  In region II it is reversible. 
 

 

r = 0.01 

r = 0.02 

r = 0.04 

0.06 

r = 0 

Ax  

T   
Figure 8: Conversion temperature relation at fixed rates for exothermic reactions. 
 
Now we notice that at fixed composition, fixed xA, the net rate of reaction has a maximum at a 
certain temperature, Tm.  Below that temperature the rate is lower and above it, it is lower.  The 
reason for this is that E1 < E2. 
 
On the above diagram we can pass a line - - - called the locus of maximum rates or a Tm line.  
For a given conversion the Tm line defines a temperature at which the rate is maximum and vice 
versa at every T the line defines an xA a which the rate is maximum. 
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We should always select To, Tmo,ω  in such a manner as to make sure that we operate on the Tm 
line. 
 
The equation for the Tm line is obtained by 
 

 00 == r
A

dT
dxfrom

T
r

∂
∂  

 
For example if we have a reversible reaction 
 
 aA+bB=pP 
 
and the rate is given by 
 
 r = k10e

− E1 / RTCA
αCB

β − k20e− E 2 / RT Cp
γ  

 
Assuming further that we deal with liquids and that CAo and CBo are given while Cpo = 0 
  

 

( )
b

Ae
Ao

Boa
Ae

p
Ae

bap
Aoc

x
a
b

C
C

x

x
a
p

CK

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−−

= −−

1

)(
      (A) 

Assuming an ideal solution 
 

 Kc = e
−ΔGr

o

RT            (B) 
 
Using (A) and (B) we can calculate xAe as a function of temperature. 
 
The given rate form, if it is to be viable in the vicinity of equilibrium, must satisfy the following 
constraint: 
 

 
Cp

γ

CA
α CB

β

⎛ 

⎝ 
⎜ ⎞ 

⎠ 
⎟ 

eq

q

=
Cp

p

CA
aCB

b  

 

The locus of maximum rates i.e the Tm-line can be obtained by 
∂r
∂T

 = 0 which results in 
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T = Tm =
(E2 − E1) / R

ln k20E2

k10E1

CAo
γ −α−β (

p
a

xA

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

γ

(1− xA )α CBo

CAo

−
b
a

xA

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

β )

⎡ 

⎣ 

⎢ 
⎢ 
⎢ 
⎢ 
⎢ 

⎤ 

⎦ 

⎥ 
⎥ 
⎥ 
⎥ 
⎥ 

   (C) 

 
For a desired conversion eq (C) gives the temperature Tm at which the rate is maximum.  
Substituting that conversion and temperature into the equation for the rate produces the 
maximum rate 
 
Example 3 - CSTR 
 

 

⎟
⎠
⎞

⎜
⎝
⎛=

−=

==
=−=Δ

=Δ

⇔

−

lit
molC

RT
exk

constlitcalC
constmolcalH

molcalG
RA

Ao

k

p

r

r

2

)(min500,12105

)/(000,2
/000,20

/500,2

18
1

298

298

10

321

o

o

ρ
 

 
f) Find he optimal size CSTR necessary to achieve a production rate of FR=100 (mol/min) 

at xA = 0.9.  If the reactor is to be operated adiabatically find the necessary feed 
temperature. 

g) If the feed is available only a T = 298K how should one operate?  Can one maintain the 
desired production rate and conversion? 

h) How should 2 CSTR’s in series be operated to minimize the total reactor volume and 
keep FR and xA at desired levels.  Feed is at 298K, T = 350Kis not to be exceeded. 

 
Solution 
 
Find equilibrium constant at 298K 

 2.68
298987.1

500,2expexp 298
298 =⎟

⎠
⎞

⎜
⎝
⎛ −

=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ Δ−
=

xRT
G

K r
o

 

 
Find equilibrium constant as a function of temperature using Van’t Hoff’s equation 

 
d ln K

dT
=

ΔHr

RT2  

 ⎟
⎠
⎞

⎜
⎝
⎛== −

⎟
⎠
⎞

⎜
⎝
⎛ −

Δ

T
xeKK TR

H

T

r 065.10exp10461.1 13
1

298
1

298  
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Find equilibrium conversion variation with temperature: 
 

 
⎟
⎠
⎞

⎜
⎝
⎛+

⎟
⎠
⎞

⎜
⎝
⎛

=
+

=
−

−

T
x

T
x

K
Kx

T

T
Ae 065,10exp10461.11

065,10exp10461.1

1 13

13

 

 

045.0094.0169.0311.0512.0720.0870.0949.0982.0986.0
380370360350340330320310300298

Aex
T

 

 
Find the locus of maximum rates 
 

 
( )

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

+
=

⎥
⎦

⎤
⎢
⎣

⎡
−

−
=

A

A

A

A
m

x
x

x
x

Ek
Ek

REET

1
ln51.30

065,10

1
ln

110

220

12   

 

388356346334326316312308301287
01.01.02.04.06.08.085.09.095.094.0

m

A

T
x

 

 
Plot the equilibrium line, xAe, and the locus of maximum rates, Tm, in order to graphically  
interpret some of the later results. 
 

 

 280 290 300 320 340 360 380 400 T 

1 

0.8 

0.6 

0.4 

0.2 

Ax  eAx

mT

 
 
a. At 9.0=Ax  KTT m 308==  
 
The rate at the operating point is: 

  

r = 5 ×108 e
−

12,500
1.987 × 308 ×2 1− 0.9( )− 3.422 ×1021 e

−
32,500

1.987 × 308 × 2 ×0.9

r = 0.815 mol
lit min

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 
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From the design equation (balance on R) 
 

  

V =
FR

RR

=
FR

r
=

100
0.815

=1227 lit( )=1.23 m3

V =1.23 m3

 

  
 
For adiabatic operation 
 

  

To − T + ÷ β A −VA( )rτ = 0 ÷ β = −Δ HrA

ρ Cp

=10

To = T − ÷ β A CAo xA = 308 −10 × 2 × 0.9 = 290K
 

 
For adiabatic operation the feed temperature would have to be 290K.  The same result is 
obtained graphically (--- adiabatic line). 
 

b. If the feed is available only at 298K we could do one of the following: 
 

i) Cool the feed from 298K to 290K and operate adiabatically 
 

 
To = 298K T = 308K To

1
 = 290K

 
 

  

− ś q = Qρ C p To − To
1( )=

FR

CAo
xA

ρ C p To − To
1( )

− ś q = 100
2 × 0.9

× 2000 298 − 290( )= 8.889 ×105 cal
min

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

 

 
ii) Introduce the feed at 298K and cool the reactor 

 
 

To = 298K T = 308K 
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− ś q = Qρ C p To − T( )+ −Δ HrA( )CAo
Q xA

− ś q = FR

CAo
xA

ρ C p To − T( )+ −Δ Hr( )FR

− ś q =100 2000
2 × 0.9

298 − 308( )+ 20,000
⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥ = 8.889 ×105 cal

min
↑

 

The cooling rate requirement is the same, as it should be as there is no work term in the energy 
balance.  But it is easier to remove heat from the higher reactor temperature. 
 
iii) Operate adiabatically with the new feed temperature while maintaining the previous feed 

rate 
  
FAo

=
100
0.9

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ ; FAo

xA = FR  

 

 
8.1

100
==

o

o

A

A
o C

F
Q  

 
Now we must find the new operating point by a simultaneous solution of the species and 
energy balance. 
 

 
0~

=+−

=

rTT

rxC

o

AAo

τβ

τ
 

 
Since we need adiabatic operation by combining the above two equations we get the 
relationship between conversion and temperature 
 

 
[ ]AA

AAoo

xxT

xCTrTT
o

+=×+=

+=+=

9.1420210298

~~ βτβ
 

 
Substituting into the first equation we get: 
 

  

2 xA = 5 ×108 e
−

12,500
1.987 × 20 14.9 + xA[ ] × 2 1− xA( )− 3.4×1021 e

−
32,500

1.987 × 20 14.9 + xA( )
⎡ 

⎣ 

⎢ 
⎢ 

⎤ 

⎦ 

⎥ 
⎥ 

1227 ×1.8
100

11.043 109 1− xA( )e
−

314.5
14.9 + xA − 6.8×1021 xA e

−
817.8

14.9 + xA

⎧ 
⎨ 
⎪ 

⎩ ⎪ 

⎫ 
⎬ 
⎪ 

⎭ ⎪ 
− xA = 0

 

 
By trial and error 
 
 KTxA 3166.31588.0 ===  
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The purity (conversion) has been reduced somewhat from the required 90%. 
 
The production rate now is RF  and rate is r. 
 

 

  

r = 5×108 e
−

12,500
1.987× 315.6 2 1−0.88( )−3.4×1021 e

−
32,500

1.987× 315.6 2×0.88

r=0.0786 mol
lit min

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

 

 

 ⎟
⎠
⎞

⎜
⎝
⎛=×==

min
8.9788.0

9.0
100 molxFF AAR o

 

 
and production rate has dropped very little. 

 
iii) We could operate the reactor adiabatically with the new feed temperature and maintain (via 

a controller) fixed exit composition at 9.0=Ax  which would require adjusting the feed 
rate. 

 
Now 
 

9.0

3168.120298~

=

=×+=+=

A

AAAo

x

KxCTT
o

β
 

 
The new rate is: 
 

  

r = 5 ×108 e
−

12,500
1.987 × 316 × 2 1− 0.9( )− 3.4 1021 e

−
32,500

1.987 × 316 × 2 × 0.9

r = 0.023 mol
lit min

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

 

 
Which is much smaller than the maximum rate. 
 
The production rate now drops to 
 

⎟
⎠
⎞

⎜
⎝
⎛=×==

min
2.281227023.0 molVrFR  

  
 
This is too high a penalty to pay for maintaining purity i.e. keeping 9.0=Ax  constant! 
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C. For minimum total reactor size we must find the minimum of the following expression 
 

  

τ1 + τ 2

CAo

=
xA1

rm1

+
0.9 − xA1

rm f

rm1
=109 e

−
12,500

1.987 Tm 1− xA1( )− 6.8 ×1021 e
−32,500

1.987 Tm1 xA1

 

 

With 

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

−
+

=

1

1

1
ln51.30

065,10

A

A
m

x
x

T  

 

  rm f
= 0.0818 mol lit min( ) 

 

By taking d
d xA1

τ1 + τ 2

CAo

⎛ 

⎝ 
⎜ ⎜ 

⎞ 

⎠ 
⎟ ⎟ = 0 one gets by trial and error 

 

KT

x

m

A

320

72.0

1

1

=

=
                    

  
rm1

= 0.5 mol
lit min

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟  

 
The required volumes are: 
 
For the first reactor 
 

  
V1 =

FAo
xA1

rm1

=
100
0.9

⋅
0.72
0.5

=160 liters 

 
For the second reactor 
 

  
V2 =

FAo
xA f

− xA1( )
rm f

=
100
0.9

0.9 − 0.72( )
0.0818

= 244.5 lit  

 
Total volume  litersVVV 40521 =+=  
 
The graphical representation of the above system is shown below 
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  300 320 340 360 380          T 

1 

0.8 

0.6 

0.4 

0.2 

Ax  

oT  

To = 298K 306 320 304 308

V1 
adiabatic 

V2 
adiabatic 

1q& 2q&−

 
 
Preheat the feed from 298K to 305.6K ≈ 306K 

( ) ( ) ⎟
⎠
⎞

⎜
⎝
⎛×=−×

×
=−=

min
1044.82986.3052000

29.0
1002986.305 5

1
calCQq pρ&  

 
Cool the stream from 1st reactor to 304.4K ≈ 304 
 

( ) ⎟
⎠
⎞

⎜
⎝
⎛×=−×

×
=Δ=−

min
1073.14.3043202000

29.0
700 6

2
calTCQq pρ&  

 
It should be noted that the above calculations can be made easier with a little analytical work to 
obtain an expression for the maximum rate as a function of conversion.  This is done by 
substituting the mT  values 
 

( )

⎥
⎦

⎤
⎢
⎣

⎡
−

−
=

A

A
m

x
x

Ek
Ek

REET

1
ln

110

220

12  

 
for temperature T in the rate expression 
 

−RA( )m
= rm = k10e

−E1 R Tm CAo
1− xA( )− k20 e−E2 R Tm CAo

xA  
 
If we recall that abba bee

a

== lnln  
 
We get: 
 

rm = k10
k10 E1

k20 E2

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

E1

E2 − E1

− k20
k10 E1

k20 E2

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

E2

E2 − E1

⎛ 

⎝ 

⎜ 
⎜ ⎜ 

⎞ 

⎠ 

⎟ 
⎟ ⎟ 

CAo

1− xA( )
E2

E2 − E1

xA

E1

E2 − E1( )
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In our particular example the above expression reduces to: 
 

  rm = 3.22 1 − xA( )1.625
xA

−0.625 
 
  
 
Another variation on the above problem is to have two equal size CSTRs in series.  For 
maximum production rate then under conditions 21 ττ =  we must find 

1Ax  that satisfies 
 

xA1

rm1

=
xA2

− xA1

rm2

 

 
This happens at 75.0

1
=Ax  so V1 = V2 = 205 liters 

In summary the following types of problems may be encountered: 
 

I. Given qQTTQV mmo o
&,~,,,,, β , find Ax  and T.  This is equivalent to determining the 

performance of an existing reactor or of one that is contemplated by design engineers.  
In this case species mass balance and energy balance are solved simultaneously. 

 
II. Given ARmo xFTT

o
and,~,, β  determine the required V and desired operating T. 

 
This is the typical design problem. 
 

III. Production rate is specified.  Exit conversion and temperature can be selected 
together with V in order to optimize some profit function. 

 
This is also a typical design problem. 
 
We have not touched here on two very important problems. 
 

- transients in a CSTR 
- control of a CSTR around an unstable steady state. 

 



ChE 471 Fall 2005 
LECTURE 7 

 

 27

Extension to Multiple Reactions 
 
One should keep in mind that yields and selectivities can be affected dramatically by the choice 
of operating temperature when activation energies of various reactions are different. 
 
The problems consist of 
 
a. Finding the optimum temperature for a desired product distribution irrespective of space 

time requirements. 
 
b. Finding an optimal temperature for a given reactor (given τ ) which maximizes the 

production of the desired product. 
 
The equations to be solved are given R independent reactions among S species 
 

RiAv
s

j
jij ......,2,10

1

==∑
=

 

 

Fjo − Fj + vij ri V = 0∑   (1) 

Rj ......,2,1=  
 
or 
 

  
vij

ś X i − ri V[ ]= 0
i = 1

R

∑  

 

  
ś X 1 − ri V = 0 for i =1, 2, 3...R   (1a) 

 
and 
 

( )∑
=

=+−
s

j
jjjojo qHFHF

1

0~~
&  (2) 

 
Equation (1) represents independent R species balances and eq (2) is the energy balance based on 
assumptions of  
 
a) no work other than flow work 
b) negligible changes in potential and kinetic energy 
 
If we assume further c) ideal gas behavior d) ideal mixture 
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Fjo Δ H
~ fj

+ C
~ p j

dT
T 0

To

∫
⎛ 

⎝ 
⎜ ⎜ 

⎞ 

⎠ 
⎟ ⎟ − Fj Δ H

~ fj
+ C

~ p j

dT
T 0

T

∫
⎛ 

⎝ 
⎜ ⎜ 

⎞ 

⎠ 
⎟ ⎟ + ś q = 0

j = 1

s

∑
j = 1

s

∑

Fjo C
~

T

To

∫
j = 1

s

∑
pj

dT − vij Δ H
~ fj

+ C
~ p j

dT
T o

T

∫
⎛ 

⎝ 
⎜ ⎜ 

⎞ 

⎠ 
⎟ ⎟ ri V + ś q = 0

i = 1

R

∑
j = 1

s

∑
 

 
  

 

  
Fjo C

~
T

To

∫
j = 1

s

∑
pj

dT − vij Δ H
~ rTi

⎛ 
⎝ 
⎜ 

⎞ 
⎠ 
⎟ ri V + ś q = 0

i = 1

R

∑   (2a) 

  
 
Where 

TirHΔ  is the heat of reaction of reaction i at temperature T. 
 
If we further assume e) constant heats of reaction and f) constant mean specific heats we get 
 
  
 

  
ρ C p Q To − T( )+ −Δ Hri( )ri V + ś q = 0

i = 1

R

∑  (2b) 
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PROBLEMS 
 
A. Consider the following simple reaction 
 

RA ⇔  
 
The reaction rate is given by: 
 

( )

( )

( )13
2

13
1

21

10400,16718exp

10000,837exp

−

−

×⎟
⎠
⎞

⎜
⎝
⎛ −=

×⎟
⎠
⎞

⎜
⎝
⎛ −=

−=

s
RT

k

s
RT

k

slitmolCkCk RAπ

 

 
Note:  the activation energies are given in (J/mol) use the value of the gas constant accordingly. 
 
The heat of reaction is: 
 

( )molJH r 000,80−=Δ  
 
Specific heat of the reaction mixture is: 
 

  
C
~ p

= 40 J mol K( ) 

 
Assume that these are constant. 
 
1. The above reaction occurs in the liquid phase.  The pressure is high enough so that the 

liquid will not volatize in the permissible temperature operating range which is:  300 to 
900K. 

 
The feed conditions are: 
 

( ) ( ) KTlitmolCslitQ oAoo 300;1;100 ===  
 
You have a 100=V  liters CSTR reactor.  How would you operate this CSTR in order to 
maximize the production rate of R?. 
 
a) What is ( )smolFR  -maximum production rate? 
b) What are  xA & T  -operating conditions? 
c) What is the heat duty for the system? 
d) Sketch your system and location and heat duty of all heat exchangers, if any. 



NONISOTHERMAL OPERATION OF 

IDEAL REACTORS 

Plug Flow Reactor 

(CHE 471) 

M.P. Dudukovic 

Chemical Reaction Engineering Laboratory 

(CREL), 

Washington University, St. Louis, MO 



ChE 471 Fall 2005 
LECTURE 8 

 
 

 1

NONISOTHERMAL OPERATION OF IDEAL REACTORS 
Plug Flow Reactor 

 

To

Fjo, Qo

T

Fj

Tm,Qm Tm

To T

Tm Tmo
 

Assumptions:   
 
1. Homogeneous System 
2. Single Reaction 
3. Steady State 
 
Two types of problems: 
 
1. Given desired production rate, conversion and kinetics and other parameters, determine the 

required reactor size, heat duty and temperature profile. 
2. Given reactor size, kinetics, etc., determine the composition of the exit stream. 
 
Let us consider a single reaction 
 

 υ j
j =1

s

∑ Aj = 0          (1) 

 
with the rate given by 
 

 r = k10e
− E1 / RT

s
Π

j =1
Cj

α j − k20e−E2 / RT

s
Π

j = 1
Cj

β j      (2) 

 
with 
 

 Cj = CAo

Mj / A −
υ j

υA

xA

1 + εA xA

ToP
TPo

       (3) 

 
The mass balance in the reactor for species j can be written as: 
 

 
dFj

dV
= υ j r          (4) 

 
 v = 0 Fj = Fjo         (4a) 
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or 
 

 
  
FAo

dxA

dV
= ( −vA) r = −RA        (4’) 

 
 V = 0 xA = 0        (4’a) 
 
The energy balance based on (a) negligible changes in potential and kinetic energy and (b) no work 
other than flow work is 
 

 
  
−

d
dV

Fj

˜ 
H j

j=1

s

∑
⎛ 

⎝ 
⎜ 
⎜ 

⎞ 

⎠ 
⎟ 
⎟ +

Ý q v = 0       (5) 

 
   V = 0 Fj

÷ H 1 = Fjo
÷ H jo        (5a) 

 
Based on further assumptions of (c) ideal mixtures and (d) ideal gases one gets: 
 

 
  
− Fj C

~ p jj=1

s

∑ dT
dV

− H
~ j

j=1

s

∑ dFj

dV
+ ś q v = 0     (6a) 

 
Using the idea of (e) mean specific heats which are constant and (f) constant heat of reaction, one gets 
 

 
  
−(Qρ)C p

dT
dV

+ (−ΔHr )r + ś q v = 0       (6) 

 

  Qρ = Ý m tot  is the mass flow rate which is constant 
 

Ý q v
J

m3s
⎛ 
⎝ 

⎞ 
⎠  is the rate of heat addition per unit reactor volume 

 
The simplest constitutive relationship for the rate of heat exchange is: 
 
   ś q v = Uav (Tm − T )        (7) 
 

av
m2

m3

⎛ 
⎝ 
⎜ ⎞ 

⎠ 
 - area for heat transfer per unit reactor volume 

 
The equations to be solved simultaneously are: 
 

 Fao
dxA

dV
+ υA r = 0        (A) 
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QρC pm

dT
dV

− (−ΔHr )r + Uav (T − Tm )
− ś q v6 7 4 8 4 

= 0     (B) 

 

 
    
mQmρm C pm

dTm

dV
−Uav (Tm − T)

− ś q v6 7 4 8 4 
= 0      (C) 

 
V = 0; xA = 0; T = To, , (Tm = Tmo for cocurrent flow      
 
V = V; (Tm = Tmo for countercurrent flow)      (D) 
 
and 
 

G
du
dz

+
dp
dz

+ F = 0         (E) 

 
G = ρu  - mass velocity 
 
P = pressure 
 

z =
V
A

 - axial distance 

 

u =
Q
A

 - velocity 

 
A – cross sectional reactor area 
 
F – frictional losses 
 
Equation (E) is the momentum balance.  However this equation is usually solved separately and a mean 
pressure is selected for evaluation of gas concentrations in eq (3). 
 
For gases the use of mass fractions, wj, and extent per unit mass, ξ' '  is recommended.  (See lecture 1). 
 
The equations can then be written as: 
 

 G
dξ ' '

dz
= r          (8) 

 

 G
dT
dz

= β' ' r + qv
' '         (9) 

 
 z = 0 ξ' ' = 0, T = To        (10) 
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 β ' ' =
−ΔHr

Cp

; q' '
v =

qv

C p

       (11) 

 
where the rate is expressed by: 

 

  

r = k10e
−E1 / RT

s
Π

j = 1
C jo

α j 1 + υ j

« m tot

Fjo

ξ© ©
⎛ 

⎝ 
⎜ ⎜ 

⎞ 

⎠ 
⎟ ⎟ 

α j

ToP
TPo

1

1 + υ j Mavo
′ ′ ξ 

j=1

s

∑

⎡ 

⎣ 

⎢ 
⎢ 
⎢ 
⎢ 
⎢ 

⎤ 

⎦ 

⎥ 
⎥ 
⎥ 
⎥ 
⎥ 

υ j
j=1

s

∑

 

 

 −k20e
− E2 / RT

s
Π

j =1
Cjo

β j 1 +υ j

Ý m bot

Fjo

ξ' '
⎛ 

⎝ 
⎜ ⎞ 

⎠ 
⎟ 

β j

To P
TPo

1
1+ y∑( )Mavo

ξ ""

⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥ 

v j∑
  (12) 

 
Mavo

 - average molecular weight at feed conditions 
 
Ý m tot  = GA – mass flow rate 

 

  

« m tot

Fjo

=
M j

w jo

 

 
wjo – mass faction of j in the feed. 
 
For liquids one can write 
 

 
dξ
dτ

= r           (13) 

 

 
dT
dτ

= ˜ β r + ˜ q v          (14) 

 
 τ = 0 ; ξ = 0 ; T = To        (15) 
 

 ˜ β =
−ΔHr

ρCp

; ˜ q v =
qv

ρC p

=
Qv

' '

ρ
      (16) 

 
where the rate is given by 
 

 

  

r = k10e
−E1 / RT

s
Π

j = 1
C jo + υ jξ( )α j

− k20e
−E2 / RT

s
Π

j = 1
C jo + υ jξ( )β j

  (17) 
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 τ =
z
u

=
V
Q

 - residence time along the reactor. 

 
From eqs (8) and (9) or (13) & (14) we can always get the following relationship between temperature 
and extent 
 

 T = To + β ' 'ξ ' ' +
1
G

qv
' '

o

z

∫ dz        (18a) 

or 
 

 T = To + ˜ β ξ + ˜ q vdτ
o

τ

∑         (18b) 

 
For adiabatic operation  (qv

' ' = 0, ˜ q v = 0 ) this yields the equation of the  adiabatic line, i.e extent and 
temperature satisfy the relationship below at any and every point of the reactor 
 
 T = To + β ' 'ξ ' '          (19a) 
 
 T = To + ˜ β ξ          (19b) 
 
The maximum fractional adiabatic temperature rise is given by the Prater number just like in the case of 
a CSTR. 
 

 
ΔTad max

To

= β =
−ΔHr( )CAo

−υA( )ToρC p

       (20) 

 
Basic types of problems 
 
1. The temperature in the reactor is prescribed 
 

a. T(z) = To – isothermal reactor.   Integrate (8) or (13) and find extent along the reactor.  From 
eq. (9) or (14) find the heat addition/removal requirement along the reactor and the overall 
heat duty for the reactor.  

 
b. T(z) specified. Integrate (8) or (13) find ξ (z).  Use ξ (z) and T(z) in eq (9)or (14) to get qv (z) 

 
 

2. The heat addition (removal) rate is prescribed 
 

a) Adiabatic operation.  T = To + β ' 'ξ ' ' or T = To + βξ .  Substitute into eq (8) or (13) and 
integrate 
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b) Heat duty is prescribed.  qv
' ' (z) or q v(z ) prescribed.  Simultaneously integrate (8) or (9) or 

substitute 
 

 T = To + β ' 'ξ ' ' +
1
G

qv
' '

o

z

∫ dz  into (8) and integrate. 

 
3. Rate of heat addition (removal) controlled by another equation 
 

 ś q v = Uav (T − Tm ) 
 

a) Tm = const.  Integrate eqs (8) and (9) or eqs (13) and (14) simultaneously. 
 This is the case when reactor tubes are immersed in boiling medium or condensing medium. 
 
b) Tm determined with T and ξ ’’ by equations (A) to (E). 

 

  

Gm
dTm

dz
= mκ m

' Tm − T( )

κ m =
Uav m

Cpm

Gm = Qmρm

Am

 

 
Note:  With cocurrent cooling a PFR can be kept isothermal with countercurrent cooling it cannot in the 
case of n-th order reactions.  Prove that for an exercise. 
 
There is always a unique steady state in a PFR.  Main problem with PFR’s is: 
 
hot spot formation 
parametric sensitivity and temperature runaway. 
 
Classical example of temperature runaway presented by Bilous & Amundson (AIChE J., 2, 117 (1956). 
 
PFR cooled from the wall t constant Tm = Twall. 
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440

420

400

380

360

340

320

300
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342.5

337.5

335

330

320

310

Tm = 300

τ

T

 
A “hot spot” is formed due to a very small change in wall temperature.  The system shows extreme 
parameter sensitivity. 
 
 
Reaction runaway is the phenomenon when a small change in feed concentration, temperature, flow rate 
or in coolant temperature triggers a dramatic change in he temperature profile and leads to runaway 
reactions and explosions.  Exact criteria for runaways are difficult to develop. 
 
Approximate criteria are given on the enclosed graph.. 
 
Example 1 
A reversible first order reaction (considered earlier in a CSTR) is now to be per formed in a PFR. 
 

 A
→
←

R   (liquid phase) 

 

  

k1 = 5x108e−12,500 / RT (min−1)

k2 = 3.4x1021e−32,500 / RT min−1( )
ΔHr = −20,000 cal / mol ΔG298

o = −2,500 cal / mol

ρCp − 2,000 (cal / lit oC)

CAo = 2 (mol / lit)
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If the feed rate is Q = 100 (lit/min) and the PFR size is V = 1,500 (lit): 
 
a) find final conversion in an isothermal reactor operated at 0, 10, 20, 100˚C 
 
b) determine conversion in an adiabatic reactor if the feed is at i) 0˚C, ii) 20˚C, 
 
c) if the maximum permissible temperature is 80˚C determine the optimal temperature profile along 

the reactor necessary to maximize exit conversion. 
 
d) If the desired conversion is 85% find the minimum reactor volume and the desired heat removal 

rate along the reactor.  Permissible temperature range is 0˚ to 100˚C. 
 
Solution 
 
a)   For an isothermal reactor only the mass balance has to be solved 
 

 τ =
V
Qo

= CAo
dxA

−rAo

xA

∫  

 −rA = k1CA − k2CR = CAo k1(1 − xA) − k2 xA[ ] 

 
  
−rA = k1CAo 1 − xA −

xA( 1 − xAe)
xAe

⎡ 

⎣ 
⎢ 
⎢ 

⎤ 

⎦ 
⎥ 
⎥ 

sin ce k2 =
k1

K
=

k1 1 − xAe( )
xAe

 

 (−rA ) =
k1CAo

xAe

(xAe − xA ) xAe =
K

1 + K
=

k1

k1 + k2

 

 (−rA ) = (k1 + k2 )CAo (xAe − xA)  

 
  

τ =
1

k1 + k2

dxA

xAe − xAo

xA

∫ =
1

k1 + k2

ln xAe

xAe − xA

⎛ 

⎝ 
⎜ ⎜ 

⎞ 

⎠ 
⎟ ⎟  

 
Solve for conversion 
 

 

xA − 1− exp(−k1(1 + 1
K

)τ )⎡ 
⎣ 

⎤ 
⎦ 

= xAe 1 − exp
−k1

xAe

τ
⎛ 

⎝ 
⎜ ⎞ 

⎠ 
⎟ ⎡ 

⎣ ⎢ 
⎤ 

⎦ ⎥ τ =
1500
100

=15 min 
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We get the following results: 
 
T K k1 xae xa 
273 1494 0.0498 0.999 0.526 
283 407 0.112 0.998 0.813 
293 121 0.239 0.992 0.965 
303 40 0.486 0.975 0.974 
313 13.5 0.943 0.931 0.931 
323 5.0 0.755 0.833 0.833 
333 2.0 3.149 0.662 0.662 
343 0.81 5.46 0.448 0.448 
353 0.35 9.17 0.262 0.262 
363 0.16 15.0 0.139 0.139 
373 0.08 23.8 0.071 0.071 
 

 Same as equilibrium conversion 
 
The reactor space time is so large that above 50˚C practically equilibrium conversion is obtained. 
 
a) The adiabatic operating line is 
  

  

T = To + ˜ β ACAo xA

˜ β A =
−ΔHrA

ρCp

=
20,000
2,000

=10
lit oC
mol

⎛ 
⎝ 
⎜ ⎞ 

⎠ 

CAo = 2 mol
lit

⎛ 
⎝ 

⎞ 
⎠ 

T = To + 20 xA

 

 
Substitute this relationship into the mass balance and integrate: 
 

 
  
CAo

dxA

dτ
= ( k1 + k2) CAo( xAe − xA) = k1CAo −( k1 + k2) CAoxA  

 τ = 0 xA = 0  
 k1 = k10e

E1 / RTad = k10e−E1 / R(To + 20 xA )  
 k2 = k20e−E 2 / R(To +20 x A )  

 xAe =
K

1 + K
=

k1

k1 + k2

 

 
Thus integrate numerically 
 

 
dxA

dτ
= k10e− E1 / RT (To + 20 x A ) − k10e

− E1 / R To+20 x A( ) + k20e− E2 / R(To +20 x A )⎛ 
⎝ 

⎞ 
⎠ xA  

 τ = 0 xA = 0  
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dxA

dτ
= 5x108 e

− 12, 500
1.987(To +20 x A ) − 5x108 e

− 12, 500
1.987(To +20 x A ) + 3.4x1021e

− 32,500
1.987(To +20 x A

⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥ xA  

 τ = 0 ; xA = 0 
 
Desired result is obtained at τ = 15. 
 
Alternatively we could solve by trial and error the following integral: 
 

 τ = 15 =
dx

5x108e
−

12, 500
1.987(To + 20 x ) − 5x108 e

−
12,500

1.987(To +20 x ) + 3.4x1021e
−

32,500
1.987(To +20 x )⎡ 

⎣ ⎢ 
⎤ 

⎦ ⎥ x
o

x A

∫  

We find: 
 

i) To = 0˚C = 273 K    xA = 0.78 
 ΔTadiabatic = 15.7K = 16K T = 289 K  
ii) To = 20˚C = 293 K   xA = 0.94 = xAe 

  
ΔTadiabatic = 18.8 = 19K T = 292K

 

c) In order to maximize conversion at given space time we should follow the line of maximum 
rates. 

 

    

Tm =
( E2 − E1 / R)

ln k20E2

k10E1

+ ln xA

1 − xA

=
10, 065

30.51 + ln xA

1 − xA

⎛ 

⎝ 
⎜ ⎜ 

⎞ 

⎠ 
⎟ ⎟ 

 

 
Since maximum permissible temperature is 80˚C (353 K) we have to preheat the feed to 33 K, cool the 
reactor and keep it isothermal a 353 K until the locus of maximum rate is reached and then run along the 
locus of maximum rates. 
 
The intersection of the isothermal line T = 353 K and the Tm line determines up to which point the 
reactor has to be run isothermally. 
 

 

  

T = 353 = Tm =
10,065

30.51+ ln
xA

1− xA

⎛ 
⎝ 
⎜ ⎞ 

⎠ 
⎟ 

 

 

 

  

xA =
exp 10,065 − 353x30.51

353
⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

1+ exp 10,065 − 353x30.1
353

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

= 0.119 
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τ =

1
k1 + k2

dx
(xAe − xA)o

0.119

∫ =
1

(k1 + k2 )
ln

xAe

xAe − xA

⎛ 

⎝ 
⎜ ⎞ 

⎠ 
⎟  

 
At 80˚C (353 K) from the table given earlier 
 

 

  

τ =
1

9.17(1+ 1
0.35

)
ln

0.262
0.262 − 0.119

⎛ 
⎝ 

⎞ 
⎠ = 0.017(min)  

 
The isothermal operation should occur in the very entry section of he reactor.  After that the Tm line 
should be followed. 
 

 

  

dxA

dτ
= 5x108 e

− 12 ,500
1.987Tm (1− xA) − 3.42x1021e

− 32,500
1.987Tm xA

Tm =
10,065

30.51 + ln
xA

1 − xA

⎛ 
⎝ 
⎜ ⎞ 

⎠ 
⎟ 

 

 τ = 0.017 xA = 0.119 
 
Desired result at τ = 15 
 
 xA=0.988       Texit = 288K 
 
Really one should preheat only to adiabatic line.  Adiabatic line should end at T = 353 K, xA  = 0.119.  
Hence, the fluid must be preheated up to To = T − ˜ β ACAo xA = 353 − 20x0.119 = 350K  
 
The graphical representation of parts (a-c) has the following form: 
 

eAx

T

xA

 
 

a. Isothermal.  Solid lines are operating lines for τ = 15 min 
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eAx

T

xA

 
 
b. Adiabatic.  Adiabatic line with τ = 15 
 

 Tmax

eAx

mT

xA

 
 
c. Operating along the locus of maximum rates 
 
d) Permissible temperature range is 0˚C to 100˚C.  We want minimum reactor size for xA = 0.85. 

Preheat to 100˚C, run along the locus of maximum rates 
 

 τ =
dx

5x108 e
−

12 ,500
1.987Tm 5x108 e

−
12,500

1.987Tm + 3.4x1021e
−

32, 500
1.987Tm

⎡ 

⎣ ⎢ 
⎤ 

⎦ ⎥ x
o

x A = 0.85

∫  

with 

  

Tm =
10,065

30.51 + ln
xA

1 − xA

⎛ 
⎝ 
⎜ ⎞ 

⎠ 
⎟ 

 

τ = 1.8min   Thus with Q = 100 lit/min we need only V = 160 liters 
 
The desired temperature profile along the reactor is presented in the enclosed graph.  The heat removal 
per unit volume is 
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−
ś q 

Q
= ρC p (To − T ) + (−ΔHr )CAoxA

= 2, 000(100 − T ) + (20, 000x2)xA

 

 
This curve is also presented in the figure.  The total heat density is: 
 

 
−

Ý q 
Q

⎛ 
⎝ 
⎜ ⎞ 

⎠ tot

= 2,000(100 − 70) + 40,000x0.85

= 1.56x105 (cal / lit)

 

 
 
With Q = 100 lit/min  − Ý q tot = 1.56x107 (cal / min)  
 
For comparison, if cooling failed and reactor ran adiabatically with To = 100˚C one would get 
 
 
   xAad

= 0.068,Texit =126 oC  
 
The adiabatic temperature profile is shown also on the enclosed figure. 
 
Extension to Multiple Reactions 
 

 υij
j =1

s

∑ Aj = 0 i =1,2,...R        (1) 

 

 −
dFj

dV
+ υij ri

i=1

R

∑ = 0 j = 1,2,...R       (2) 

or 

 
− υij

i =1

R

∑ d Ý X i
dV

+ υij ri
i=1

R

∑ = 0

− d Ý X i
dV

+ ri = 0
       (2a) 

 

 −
d Fj

˜ H j( )
dV

+ Ý q v = 0         (3) 

 
 V = 0 ; Fj = Fjo ( Ý X i = Ý X i

o ) ; ˜ H j = ˜ H jo  
 
With the usual assumptions made about the energy balance (see the lecture on CSTR) one gets: 
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 − Fjo
j =1

s

∑ C
~ pj

dT
dV

+ −ΔHrTi( )
i =1

R

∑ ri + Ý q v = 0      (4) 

 
The equations to be solved for a set of multiple reactions are: 
 

 −
d Ý X i
dV

+ ri = 0 i =1,2...R       (A) 

 

 −ρCpQ
dT
dV

+ −ΔHri( )ri
i=1

R

∑ + Ý q v = 0      (B) 

 
V = 0 ; Ý X i = Ý X io T = To

ρQ = const
 

 

 ri = ki10e
− E1i / RT

s
Π

j =1
Cj

α ij − ki 20e
− E2 i RT

s
Π

j = 1
Cj

β ij      (C) 

 
with 

 Cj = Cjo
ρTo

ρoT

1+
υij

Ý X i
i =1

R

∑
Fjo

1+
υij

Ý X i
j=1

s

∑
i =1

R

∑
Fbot o

⎛ 

⎝ 

⎜ 
⎜ 
⎜ 
⎜ 
⎜ 

⎞ 

⎠ 

⎟ 
⎟ 
⎟ 
⎟ 
⎟ 

      (D) 

 
The constitutive relationship for Ý q v  is: 
 
 Ý q v = Uav

(Tm − T ) 
 

a) Tm= const 
 
b) Tm is governed by another D.E. 

 
 

  
mρmQm Cpm

dTm

dV
− Ý q v = 0        (E) 

 
 V=0 Tm = Tmo (cocurrent flow) 
 
 V = V  Tm = Tmo  (countercurrent flow) 
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Problems 

Consider the reaction introduced in he last lecture 
A

→
←

R
 

 R=k1CA-k2CR (mol/lit s) 
 

 k1 = exp 7 −
83,700

RT
⎛ 
⎝ 

⎞ 
⎠ x103  (s-1) 

 

 
  
k2 exp 18 −

167,400
RT

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ ×103  (s-1) 

 
ΔHr = −80,000 (J / mol)  
 C

~ p
= 40(J / mol K) 

 
Activation energies given in joules. 
 
1. The above reaction occurs in liquid phase!  Permissible temperature range of operation is 300 <T < 

900 K.  
 

Feed conditions: 
 
Qo = 100 (lit/s) ; To = 300 K ; CAo = 1(mol/lit) 

 
You have a V = 100 liters PFR.  How would you operate this reactor if the only objective is to 
maximize the production rate of R.  

 
a) What is maximum FR. 
 
b) What are final xA and ΔT . 

 
c) What is the profile of heat addition or removal for every 10% of reactor volume. 

 
d) What is the overall heat duty for the reactor and any heat exchangers preceding it. 

 
e) Sketch your system. 

 
2. The above reaction occurs in  gas phase. 
 
 The gas feed ate is 
 
   Qo =100( lit / s) at To = 300K, Po = 24.6 atm  
 
 The feed is 50%A, 50% inerts.  Permissible temperature range is 250< T < 900 K.  Pressure is 

constant in the reactor.  Gases start to condense below 250 K.  Desired conversion is 85%. 
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a) What reactor volume is needed if you operate along the locus of maximum rates? 
 
b)    What is the distribution of heat duty along the reactor? 
 
c) What is the production rate of R? 

 
3. For the above problem what would FR and xA be if you had a reactor (PFR) of V = 100 liters 

available? 
 
4. Suppose that the reactor can only be operated adiabatically and the desired conversion is 85%.  

Minimize the required reactor size. 
 

a)  What reactor type do you recommend? 
 
b)  What feed temperature would you use? 

 
c) What is the heat duty? 
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WALL COOLED TUBULAR REACTORS:  AVOIDANCE OF HOT SPOTS 
 

The pioneering work of Bilous and Amundsen (AIChE J. 2, 117, 1956) showed that a plug flow 
reactor (PFR) cooled from the wall can exhibit extreme parametric sensitivity to small changes in 
the wall temperature or heat transfer parameters.  Their observation is sketched in Figure 1 
below: 
 
 

300
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FIGURE 1:   Temperature Profiles in a Wall Cooled Tubular Reactor as a Function of Wall 
Temperature 

 
 
Clearly a small variation in the wall temperature of 2.5 °C (from 335˚C to 337.5 °C) caused an 
80˚C local rise in reactor temperature!  This 'hot spot' generation can lead to reactor runaway for 
many reasons.  Undesirable reactions of high activation energy can take off at this elevated 
temperature, vapor formation can cause increased pressure, rate of reaction may reach extreme 
values, etc.  Therefore, it is imperative to operate the wall cooled tubular reactor in such a 
manner that it does not exhibit such extreme parametric sensitivity and, hence, is not prone to 
runaway. 
 
To identify the parameter space for safe operation one starts with the mass and energy balance 
for the reactor.  Assuming for simplicity, constant volumetric flow rate, Q = const., and a single 
simple irreversible reaction,  A →  products, the governing equations are: 
 
Mass balance on species A: 
 

 
( )

Ao

AA

C
R

d
dx −

=
τ

          (1) 
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Energy balance (assuming constant average physical properties and constant heat  of reaction): 
 

 ρ Cp
dT
dτ

= −ΔHrA( )−RA( )− Uav T − Tw( )      (2) 

 
The initial conditions are: 
 
 oA TTx === ,00τ         (2a) 
 
In the above equations: 
 

 ( )min
Q
V

=τ  is the space time measured from the reactor entrance as reactor internal 

volume V is also measured from the entrance. 
 

 CAo
mol
m3

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟   = molar feed concentration of A 

   
ρ kg / m3( )  =  fluid density 

     
Cp J / kgoK( ) = mean specific heat of the reaction fluid 

 ΔHrA

J
mol A

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟  = heat of reaction per mole of A 

 
  
−RA

mol A
m3 min

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟  = rate of reaction of A 

 T(˚K) = temperature in kelvin 
 xA = conversion of A 

 
  
U J

m2K min

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟  = overall heat transfer coefficient 

 
  
av m2 / m3( )=

4
dt

 = area for heat transfer per unit internal reactor volume 

 Tw (˚K) = coolant (wall) temperature 
 To (˚K) = inlet feed temperature 
 dt (m) = tube (reactor) diameter 
 
To simplify the algebra, but without loss of generality of the result to be derived, we will take 
To= Tw thus assuming the inlet and wall temperature to be the same. 
 
We can now divide eq (2) by eq (1) and rearrange the result to get:  
 

 
  

dT
dxA

=
−ΔHrA

CAo

ρ Cp

−
4U T − To( )

dtρCp −RA( )/ CAo
      (3) 
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Let us define the characteristic reaction time based on the value of the reaction rate at the feed 
conditions of concentration and temperature: 
 

 ( ) n
Ao

RTE
o

Ao

oA

Ao
R Cek

C
R

C
o/−

=
−

=τ        (4) 

 
Here we have assumed for simplicity an n-th order irreversible reaction and ( )oAR−  means that 
we evaluate the rate at feed conditions of concentrations and temperature. 
We also have a characteristic heat transfer time: 
 

 
U
Cd pt

h 4
ρ

τ =           (5) 

 
Based on these, two dimensionless groups arise naturally: 
 

 κ = N =
τR

τ h

=
4U CAo

−RA( )o
dtρCp

       (6) 

and 

 β =
−ΔHrA( )CAo

ρ CpTo

         (7) 

 
Equation (3) now becomes (recall we assumed wo TT = ) 
 

 
  

dT
dxA

= β To −κ T − To

−RA( )/ −RA( )o

       (8) 

 
This last expression contains the dimensionless rate of reaction, ( ) ( )oAA RR −− / , which for an n-
th order irreversible reaction can be written as:  
 

 
  

−RA( )
−RA( )o

=
koe

−E / RTCA
n

keo
−E / RToCAo

n = e
E

RTo
1−

To

T

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

1− xA( )n
     (9) 

 
Dimensionless activation energy is: 
 

 
oRT

E
=γ           (10) 

 
and dimensionless temperature is conveniently defined by: 
 

 
o

o

T
TT −

= γθ           (11) 

 
Upon substitution of eqs (9), (10), (11) into equation (8) we get: 
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dθ
dxA

= β γ −
κθ

eθ / 1+θ / γ( ) 1− xA( )n        (12) 

 
The product βγ  in the literature is often denoted by δ  or S: 
 
 βγδ ==S           (13) 
 
 
 
We can rewrite eq (12) as: 
 

 dθ
dxA

= δe−θ / 1+θ / .γ( ) 1− xA( )−n
eθ / 1+θ / γ( ) 1− xA( )n

−
κ
δ

θ
⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥     (14)  

     
Since the term on the right hand side of eq (14) that multiplies the term in the brackets is always 
positive the sign of the derivative of the dimensionless temperature with respect to conversion, 

i.e sgn 
Adx

dθ
, depends on the terms in the brackets in eq (14).  By taking the coolant temperature 

Tc to be equal to the feed temperature To, we have assured that 0>
θ

Adx
d

  and temperature rises 

with conversion.  This is obvious by observing and plotting the terms in the brackets in eq (14).  
Physically this tells us that if we try to cool an exothermic reaction with the coolant at feed 
temperature, unless the characteristic heat transfer time is infinitesimal in comparison to 
characteristic reaction time, i.e ∞→κ , or stated differently the heat removal rate is infinitely 
faster than the heat generation rate by reaction at the feed (wall) temperature, then the reactor 
temperature must rise with conversion.  We can allow for this but we want to know what values 
of parameters γκδ ,,   will keep that temperature rise within safe limits. 
 
We can think of the first exponential term in the brackets of eq (14) as the heat generation term 
by reaction and the second as the heat removal rate.  Indeed heat generation term has an 
Arrhenius dependence on temperature, heat removal rate is linear in temperature.  Now the heat 
generation term is difficult to plot as a function of dimensionless temperature θ   because of the 
presence of the (1-xA)n conversion dependent term.  We would need to integrate eq (14), save 
values of xA vs θ  and then we could plot the terms in brackets of eq (14) against θ .  However, 
since we are interested in preventing excessive maximum temperatures in the reactor, we can 
take a conservative approach by assuming the worst possible scenario.  In the n-th order reaction 
(n > 0) the rate of heat generation is being slowed down as conversion increases with θ  as the 
(1-xA)n term becomes smaller and smaller at increased conversion.  The worst possible scenario 
is then if the heat generation rate (and hence the rate of temperature rise) is not affected by 
increased conversion.  This is the case of zeroth order reaction. 
 
For a conservative approach assume n = 0 and now consider the term in the brackets of eq (14) 
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 ( ) )()()( 21
/1/ θθθ

δ
κθ γθθ yyeF −=−= +       (15) 

 
Clearly, as γθθ eyy →∞→== 11 ,asand;1)0(,0  and y1 is bounded.  At the same time, as 

,asand;0)0(,0 2 ∞→== θθ y  y2 is unbounded.  Thus, )(1 θy   is a sigmoidal (S-shape) 
curve and )(2 θy  is a straight line through the origin as shown in Figure 2. 
 
Depending on the value of the ratio of the two dimensionless groups δκ /   the three scenarios 
depicted in Figure 2 may occur. 
 
 
 

,     ,

( )
( )θ
θ

2

1
y
y

( )θ1y

1maxθ 2maxθ 3maxθ θ0

γe

1

are ( )02y  for

decreasing δ
κ

1 2 3

2 3

 

 

FIGURE 2:  Sketch of ( ) ( )θθ 21 , yy  of Eq. (15) 
 
 

 
The three straight lines in Figure 2 represent )(2 θy  at three different values of the parameter 

δκ / .  Please, recall that at ∞→δκ /  our )(2 θy  would be a vertical line guaranteeing 0=θ , 
i.e T = To = Tw.  For the three scenarios depicted above 
 

 
321

⎟
⎠
⎞

⎜
⎝
⎛>⎟

⎠
⎞

⎜
⎝
⎛>⎟

⎠
⎞

⎜
⎝
⎛

δ
κ

δ
κ

δ
κ

         (16) 
 

and the rate of cooling decreases as we go from case 1 to case 3.  Also remember that the value 

of θ   at which )()( 21 θθ yy =  signifies 0..0)( ==
Adx

deiF θθ   and yields the maximum 

temperature that is observed in the reactor at such conditions.  So, in case of rapid heat removal 
rate (Case 1) the maximum temperature 1maxθ  is relatively small and of no concern.  At the 
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certain lower value of heat transfer rate than in case 1, )(2 θy  not only intersects but is a tangent 
of )(1 θy  (Case 2).  In this case the maximum temperature 2maxθ   is still tolerable but  any 
further, even very small, decrease in δκ /   would lead to an excessive maximum temperature as 
depicted in Case 3 where clearly 3maxθ   is a hot spot to be avoided. 
 
This tells us that in order to prevent a hot spot we must have: 
 

 )()( 21 θθ yy =                     which yields maxθ      (17a)  
 
and 

 
maxmax

21

θθ θθ d
dy

d
dy

≤   for avoiding the hot spot    (17b) 
       

 
This means that at the maximum temperature, maxθ , the slope of the heat generation line, ( )θ1y , 
must be less than the slope of the heat removal line, ( )θ2y .  The condition at which the slopes 
are equal corresponds to using the equality sign in eq (17b) and is illustrated by line 2 in Figure 
2.  This defines the maximum allowable maximum temperature 2maxθ .  Beyond this point 
excessive hot spots may arise. 
 
We now apply eq (17a) and (17b) to eq (15) to get 
 

 ( ) θ
δ
κγθθ =+ /1/e          (18a) 

and 
 

 
( )

δ
κ

δ
θ

γθθ ≤

⎟
⎠
⎞

⎜
⎝
⎛ +

+ /1/
2

1

1 e         (18b) 

 

By eliminating )/1/( γθθ +e   in equation (18b) in terms of θ
δ
κ

, as per eq (18a), and by using the 

equality sign in eq (18b), we can develop an equation for the maximum permissible temperature.  
Do that for an exercise by solving the resulting quadratic equation for maxθ .  Substitution of the 
result for maxθ  in the inequality of eq (18b) determines the parameter space that guarantees the 
absence of hot spots.  The result is not pretty looking. 
 
To get a clear and easy formula to remember an approximate analytical solution is developed via 
a conservative approach in which one replaces )/1/( γθθ +e   by a rising exponential θe .  This is 
equivalent to replacing k=koe-E/RT, i.e the Arrhenius temperature dependence with T

oekk α'' =   

and demanding that at T = To, k = k' and 
dT
dk

dT
dk '

=   at oTT =  i.e at that point of oTT =  both 
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functions are equal and their derivatives are equal.  Indeed )/1/(and γθθθ +ee   have the same value 
and the same value of the  first derivative at 0=θ .  In Figure 3 we sketch the approximation of 

θγθθ eey with)/1/(
1

+=  
 
 

θ

( )γθθ +1e
θe

θe

1

1y

 
 

Figure 3: Approximation of the Arrhenius dependence of the rate constant with an exponential 
function. 

 
 
Since we are interested in limiting the maxθ  the two curves are pretty close for small θ .  Clearly, 
if we replaced θθ ey with)(1   in Figure 2 we would lose the intersection with )(2 θy   for Case 3 
but this is not of concern since we are not interested in 2maxθθ > , and for Case 2 the intersection 
of θθ ey with)(2   is close to that of )(with)( 12 θθ yy   in Figure 2.  The advantage of this 
approximation is that the criteria of equations (17a) and (17b) applied to 

θ
δ
κθθ θ == )()( 21 yandey  yield 

 

 θ
δ
κθ =e           (19a) 

and 

 
δ
κθ ≤e           (19b) 

 
From which it follows: 
 
 1max =θ           (20) 
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Substitution of this into the inequality described by eq (19b) yields the parameter space that 
guarantees absence of hot spots 
 

 
δ
κ

≤e            (21) 

 
Replacing the above dimensionless quantifies in terms of actual physical variables we get from 
eq (20) the maximum permissible temperature that can be tolerated in absence of hot spots 
 

 oTT ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+≤ 11

max γ
         (22) 

 
From eq (21) we get the conditions that the system parameters must satisfy to guarantee absence 
of hot spots. 
 

 
  

4 U R To
2

koe
−E / RToCAo

n( )−ΔHrA( )E dt

≥ e        (23) 

 
where R is the ideal gas constant in proper units. 
 
This equation is usually written in terms of tube diameter that will guarantee absence of hot spots 
by providing sufficient heat transfer area per unit volume 
 

 
  
dt ≤

4U RTo
2e−1

E −ΔHrA( )koe
−E / RToCAo

n        (24) 

 
Clearly, other permutations of eq (23) are possible.  Given kinetic and reaction parameters, feed 
temperature and tube diameter one can calculate the maximum permissible feed concentration 
that guarantees safe operation, etc. 
 
Approximate analysis, using the approximate exponential dependence of the rate constant, but 
accounting for the effect of reactant depletion,  is possible for an n-th order reaction and yields 
the following result which is a little less conservative than equation (23). 
 

 3/23/2703.21 −+
≥

δδ
κ

n
e

        (25) 

 
This result is due to Chandler Barkelew, Chem. Engr. Progress Symp. Ser. No. 25, Vol. 55, p. 37 
(1959) and is one of the most useful expressions for nonisothermal tubular or batch reactors. 
 
The graph showing the parameter space that is safe,  based on Barkelew's and similar criteria, is 
appended as Figure 3.  
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Figure 3: Runaway diagram 
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SAFE OPERATION OF TUBULAR (PFR) ADIABATIC REACTORS 
 
In an exothermic reaction the temperature will continue to rise as one moves along a plug flow 
reactor until all of the limiting reactant is exhausted.  Schematically the adiabatic temperature 
rise as a function of space time, measured from the reactor entrance, takes the form shown in 
Figure 1. 
 
 

τ

T

infT

*τ

adT

0T

 
 
 
FIGURE 1:  Temperature as a function of space time in an adiabatic PFR with 

exothermic reaction. 
 
 
The final adiabatic temperature adT : 
 

 
( ) [ ]β

ρ
+=

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡ Δ−
+= 11 o

op

Aor
oad T

TC
CH

TT A  (1) 

 
is often excessive for highly exothermic systems ( β  large) and needs to be avoided.  In such 
situations the old rule of thumb suggests that we should operate in such a way that the inflection 

point, i.e. the point of maximum temperature rise 
max
⎟
⎠
⎞

⎜
⎝
⎛

τd
dT , is never reached.  This implies that 

we operate with *ττ <  where *τ  is the value of space time at which the inflection point 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
= 02

2

τd
Td  occurs. 
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Let us now develop a convenient and simple formula for use by practicing engineers which 
would guarantee safe operation.  Consider an n-th order irreversible reaction: 
 
 ( )n

A
n

Ao
RTE

oA xCekR −=− − 1  (2) 
 
At adiabatic conditions temperature and conversion are related by the adiabatic line equation 
 
 ( )Ao xTT β+= 1  (3) 
 
If we define, as in the case of wall cooled reactors, the dimensionless temperature by 
 

 
o

o

T
TT −

= γθ  (4) 

 
then conversion in Eq. (3) can be expressed in terms of dimensionless temperature as: 
 

 
δ
θ

=Ax  (5) 

 
where 
 
 γβδ =  (6) 
 
with 
 
 oRTE=γ  (7) 
 
The rate of reaction evaluated at adiabatic conditions in terms of dimensionless temperature is 
obtained by using the adiabatic line eq (5) to replace conversion.  The result is: 
 

 ( ) ( ) ( )
n

oAadA eRR ⎟
⎠
⎞

⎜
⎝
⎛ −−=− +

δ
θγθγθ 1  (8) 

 
where the rate evaluated at the feed condition is: 
 
 ( ) n

Ao
RTE

ooA CekR o=−  (9) 
 
The energy balance for adiabatic PFR operation is: 
 

 ( ) ( )adArp RH
d
dTC

A
−Δ−=

τ
ρ  (10) 

 
Written in terms of dimensionless temperature it becomes: 
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 ( )
n

R

e
d
d

⎟
⎠
⎞

⎜
⎝
⎛ −= +

δ
θ

τ
δ

τ
θ γθγθ 1  (11) 

 
where the characteristic reaction time is: 
 

 ( )oA

Ao
R R

C
−

=τ  (12) 

 
The initial condition is 
 
 00 == θτ  (13) 
 
We can rewrite Eq. (11) in the most compact way by defining the Damkohler number as the ratio 
of characteristic process time and reaction time, i.e. 
 

 
( )

Ao

oA

R C
R

Da
τ

τ
τ −

==  (14) 

 
Equation (11) and initial condition (13) become: 
 

 ( )
( )

n

e
Dad
d

⎟
⎠
⎞

⎜
⎝
⎛ −= +

δ
θ

δ
θ γθγθ 1  (15) 

 
At 00 == θδDa  (16) 
 
Now we want to have the reactor “short” enough (limit the conversion achievable) so that we can 

keep the inflection point 02

2

=
τ
θ

d
d  out of the reactor i.e. we do not let it occur in the reactor. 

 
The critical temperature at inflection point, infθ , is obtained by setting 
 

 
( )

02

2

=
δ
θ

Dad
d  (17) 

 
which results in an equation for infθθ =  yielding: 
 

 ( )[ ] 0;24
2

2
inf ≠−−++= nnn

n
γδγγγθ  (18a) 

 
 0,inf == nδθ  (18b) 
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The result for the zeroth order reaction, eq (18b), can be obtained by applying the L’Hospital rule 
to eq (18a).  A better approach is to notice that for 0=n  equation (15) indicates that 

( ) 0>δθ Dadd  always, so that there is no inflection point as the rate of temperature rise keeps 
rising until all reactant is depleted.  Then at 1=Ax , from eq (5) it follows that δθ =max  and 
therefore adTT =max . 
 
We can integrate the differential equation (15) by separating the variables to obtain the critical 
value of *δDa  and, hence, of *τ  
 

 ( )
( )

θ

δ
θ

δδ
θ γθγθδ

deDadDa n

Da

∫∫
⎟
⎠
⎞

⎜
⎝
⎛ −

==
+−inf

*

00

*

1
 (19) 

 
Clearly for given values of parameters βγδβγ =,, , and reaction order n, we can evaluate infθ  
from eq (18a) and then calculate the value of *δDa  by numerically evaluating the integral in eq 
(19). 
 
Using then the definitions of Da and δ  we get the criterion for safe operation *δδ DaDa <  
which can be expressed as: 
 

 
( ) *

2

*

δ
ρ

τ
Da

TCR

EHCek

op

r
n

Ao
RTE

o A

o

≤
Δ−−

 (20) 

 
To get a convenient, easy to remember value of *δDa , the following approximations are often 
made.  First, the Arrhenius dependence of the rate constant on temperature is replaced by an 
exponential dependence, in effect 
 
 ( ) θγθγθ ee ≈+  (21) 
 
Substituting this approximation in eq (15) yields via eq (17) to a new approximate value of the 
temperature at inflection point 
 
 ( ) napp −= δθ inf  (22) 
 
Substituting eq (21) and eq (22) into eq (19) yields 
 

 ( ) ∫∫
−

−
−

=

⎟
⎠
⎞

⎜
⎝
⎛ −

=
δδ

δ
θ

δθ

δ
θ

δ
n

n

un
n

napp du
u
eedeDa

0

*

1
 (23) 
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The final approximation (which is conservative in nature as it assumes the worst possible case of 
zeroth order reaction) ignores the slowdown of the temperature rise due to the consumption of 
the reactant, which is the same as taking 0=n  in eq (23). 
 
This yields 
 

 ( ) ( )
[ ] ( )δ

δ

δδδ

δ
δδδ

enough  largefor 111
0

00,
*

=−=−=

==

−−

−− ∫
eee

eedueeDa uu
app  (24) 

 
For highly exothermic reactions 10≥δ  and clearly ( ) 1,

* =oappDaδ . 
 
Substituting this into eq (20) gives the conservative criterion for safe operation. 
 
It is constructive to note that this same equation (20a) with time t replacing τ 
 

 
( )

12

*

<
Δ−−

op

r
n

A
RTE

o

TCR

tEHCek
Ao

o

ρ
 (20a) 

 
is used to determine the so called “time of no return” or time to explosion in batch systems.  This 
time to inflection point *t  may be very long for low oT  but becomes quite short if the system of 
high activation energy is exposed to higher oT .  Hence, chemicals that may be safe to store at 
25°C may be explosion prone if exposed to 40 – 50°C! 
 
SAFE OPERATION OF ADIABATIC CSTR 
 
The mass balance for an irreversible n-th order reaction is: 
 
 ( )τAAAo RxC −=  (25) 
 

The adiabatic equation relates conversion and temperature 
 

 ( ) pAor

o
A CCH

TT
x

A
ρΔ−

−
=  (26) 

 

Upon substitution of dimensionless temperature we get from eq (25) 
 

 ( )
n

n

e
Da

⎟
⎠
⎞

⎜
⎝
⎛ −= +

δ
θθ

δ
γθγθ 11  (27) 

 

let 
 

 ( ) ( )
n

eG ⎟
⎠
⎞

⎜
⎝
⎛ −= +

δ
θθ γθγθ 1  (28a) 
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 ( ) θ
δ

θ
nDa

L 1
=  (28b) 

 
We know from before that G is a sigmoidal curve in θ  and represents heat generated by reaction.  
L is the heat removal rate (i.e., heat removed by sensible heat of the fluid that flows through the 
CSTR). 
 
We know that up to three intersections are possible between G and L lines.  To avoid the 
intersection leading to excessively high temperatures we must assure that intersections at low 
temperatures are available.  The last permissible operating condition is the one when line L is 
also tangent to curve G as schematically shown in Figure 2. 
 
 

( )
( )θ
θ

L
G

1θ *
2 θθ = 3θ θ

1 2 3

 

 

FIGURE 2:  Schematic of the G, L vs. θ 
 
 
 
Clearly as δDa  increases the slope of the L line decreases so that 
 
 ( ) ( ) ( )321 δδδ DaDaDa <<  (29) 
 
While operating adiabatic temperatures at 21  andθθ  are acceptable, 3θ  represents too large a 
temperature jump.  Hence, we must assure that the L line always intersects the G line at its lower 
temperature branch.  The critical point is reached when L is also tangent to the G line. 
 
For safe adiabatic operation we therefore require 
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 GL =  (30) 
 

 
θθ d

dG
d
dL

≥  (31) 

 
Applying the above to eqs (28a) and (28b), and using the equality sign in eq (31), we get the 
equation for the maximum permissible temperature *

max θθ =perm .  The critical value of the space 

time *τ can be obtained from the critical value of *δDa , which in turn results from substituting 
the expression for *θ  into eq (30). 
 
To get a simple, easy to remember expression, usually we again replace ( )γθγθ +e  with θe .  This 
yields 
 

 ( ) ⎥⎦
⎤

⎢⎣
⎡ −+−−+−= δδδθ 411

2
1 2* nn  (32) 

 
The negative sign in front of the square root needs to be taken as we are interested in the lower of 
the two temperatures at which the L line could be tangent to the curve G.  Then equation (30) 
yields: 
 

 ( ) *
*

** 1 θ

δ
θθδ −

−

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−= eDa

n

app  (33) 

 
A conservative estimate, with and1 yields,0 * == θn  
 
 1* −≤ eDaδ  (34) 
 
For safe operation then 
 

 
( ) 1

2
0 −

−

≤
Δ−

e
TCR

EHCek

op

r
n

Ao
RTE

A

o

ρ

τ
 (35) 
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