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Appendix A

One Dimensional Recirculation
Model

Details of the one dimensional recirculation mode] of Kumar et al (1994) are given
in this appendix. The method of evaluation of the input model parameters, using
experimental data from CARPT (present investigation) and CT (Kumar 1994), is
illustrated. The analysis of Kumar et al. (1994) is based on the approach of Rice and
Geary (1990). The main difference between the two approaches lies in the functional
form and method of evaluation of the mixing length profile for closure of the Reynolds
shear stress.

For a steady, one dimensional, axisymmetric two-phase flow in a bubble column

the Reynolds equation of motion, neglecting end effects, is written as:

1d dP
_;E(TTM) = E + pl(l - Eg(T))g (Al)
where P 9
T
= _Zrz — 2

€g 1s the gas holdup, 7,, is the Reynolds shear stress and Tw is the wall shear stress.
The following power law expression for the gas holdup profile is assumed:

m + 2
m

€(8) = €g

in which ‘m’ is the power law exponent (a constant) and represents the steepness of

(1—cg™) (A.3)

the holdup profile. Parameter ¢ allows for non zero gas holdup at the wall, which is
observed from CT measurements (Kumar 1994; Adkins et al. 1996). €, is a parameter

related to the cross-sectional mean holdup €, by the relation:
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_ .m+2—-2
il (A-4)

Following the procedure of Rice and Geary (1990) and using the dimensionless radial
position of maximum downward flow, ), to eliminate the axial pressure gradient,
Equation A.1 can be integrated along with Equation A.3 to obtain:

m@="0 (T - (8)] e (4.5)
7ﬁ@>=3%5(%){vg§1; £> (A6)

The following expression was derived by Rice and Geary (1990) for the maximum

downward liquid velocity

gro€g 1o 2
E= D)) =y = A"—=1-=2\"1n ) AT
ur(f=3) =y = n)) (A7)
Prandtl’s mixing length model is used for describing the Reynolds shear stress, 7,,,
giving

() = P (LA | PE) ([ du) £<A (A.8)

TZ R df l R2 df ) = .
6 =2 (2 £> A (A9)

T, ==\ ) )

e R ¢ )’

Combining these equations with Equations A.5 and A.6 and using the boundary
conditions

z

at &=\ wu,=u’

and

the equation for the liquid velocity profile is given by:

R 1L EEREB(E)

wlt)=n e

de'; £ <A (A.10)
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* _ nggg 2 1 _ 2 .
ui(é) = T (£ —1-2X1n)\); E> A (A.11)
B in Equation A.10 is defined as:
2§, e\"
)= e 1= (5) | (a12)
The mixing length profile is fitted to an expression of the form:
a(l-¢)
() = —=2 +d(1 - &) A.13
©=Trge+di-9 (A.13)

The functional form for [(¢) in Equation A.13 was developed by Kumar et al. (1994)
based on experimental data for the liquid velocity profile from CARPT and the
Reynolds shear stress. a, b, ¢, d and e are constants obtained by nonlinear regression.
The input parameters, €, and [(£) can therefore be obtained from experimental data,
using which the above equations can be solved by numerical integration. There is still
an unknown, A, which is calculated by iteration while checking for liquid continuity
in the system.

The one dimensional model is illustrated with an example which considers a 14
cm diameter column (distributor: 6A) at a superficial gas velocity of 9.6 cm/s. Ex-
perimental data from CARPT for the axial liquid velocity profile (Figure A.1) and the
Reynolds shear stress (Figure A.2) are used to obtain a profile for the mixing length,
shown in Figure A.3. The fitted parameters for | () in Equation A.13 are a = 4.572,
b = 0.6002, c= 0.2299, d = -4.713 and e = 1.169. The gas holdup profile (defined by
the parameters €, = 0.148, m = 3.05 and ¢ = 0.85) for the present operating condi-
tions is obtained from Kumar (1994). Using these input parameters, the axial liquid
velocity profile calculated from the one dimensional model is shown in Figure A.1. Tt
is noted that there is reasonable agreement between the CARPT measured Reynolds
shear stress and that obtained from Equation A.5 using the parameters obtained from

holdup measurements, for the present set of data.
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Figure A.3: Mixing Length Profile, D. = 14 c¢cm, U, = 9.6 cm/s
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Appendix B

Flowchart for Computation of

Lagrangian Correlation
Coeflicients from CARPT data
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Appendix C

Heat Pulse Anemometry (HPA):

Experimental Details

The details of HPA are given in this appendix. The HPA technique uses time-of-flow
measurements to measure the mean liquid velocity between two points in the flow
field. Heat is used as tracer to tag the fluid particles. A small heating element, the
emitter, is used to label the passing fluid elements. Downstream of this emitter a fast
and sensitive detector (hot film anemometer probe) registers the passage of the heated
elements of liquid. An impulse of heat tracer introduced at the emitter is therefore
detected by the sensor probe similar to the case of a residence time distribution
measurement.

In order to obtain sufficiently large signal-to-noise ratios, tracer inputs in the
form of pseudo-random sequences of single pulses are used. The measured responses
at the sensor which by themselves are meaningless, when cross-correlated with the
pseudo-random input pulse, yield an impulse response at the point of detection, called
a time-of-flow distribution (see Figure C.1). This response is interpreted by the
following model (Lubbert and Larson 1990) which describes the mean flow of fluid
particles between the emitter and the sensor by a Gaussian distribution function:

p(t) = - exp<_%;ﬁ%

= ) (€
where 7 is the mean time-of-flow, ¢y is the intensity of mixing and § denotes the type
of mixing. Calculating 7 from experimental measurements and knowing the distance
of separation of the emitter from the detector, the mean velocity of the liquid between

the emitter and sensor can be calculated.
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The variables during a measurement are the time of sweep, ts, which is the time

during which several data points (pseudo random pulse) are sampled. The time of
measurement, t,,, is the total time for a given experimental measurement over which
tm/ts number of of sweeps are taken. For highly turbulent and unsteady flows such
as in bubble columns, ¢,, must be significantly larger than ¢, (Table C.1), in order to
obtain good measurements,

Experiments using HPA have been conducted in the 19 c¢m column at three
gas velocities, 2 cm/s, 5 cm/s and 12 cm/s. For a given radial position, rj,, the
probes were placed at different axial distances by fixing the position of the emitter
and varying the position of the sensor downstream. The minimum distance of 3.0
cm, between the emitter and sensor, and a maximum of 19.0 cm were used. Care
was taken to position the probes in the middle section of the column, where the flow
is well developed. Several experiments were conducted for a given set of positions
of the emitter and sensor probe. However due to the sensitivity of the equipment
to external disturbances (noise), a significant portion of the experiments had to be

rejected, based on the nature of the measured experimental response. given

or a giv

radial location, the resulting mean residence times were used to calculate the mean
velocity of the liquid between the emitter and sensor, the average of which has been
considered for comparison with CARPT data. The experiments were conducted for
four such radial locations of the probes for a given gas velocity.

Typical results for selected positions of the probes, at different gas velocities
are tabulated in Table C.1. Figure C.2 shows a comparison of the one dimensional
axial liquid velocities from CARPT with that obtained from the HPA time-of-flow
measurements. The trends for the time average axial liquid velocity are the same
for all the gas velocities considered. Velocities from HPA are consistently lower than
those measured by CARPT in the center of the column, i.e., 7 < 4 cm. In the outer
annular region of the column, 7 > 4 cm, the comparison between the two techniques
is better. In general, the results from HPA show flatter profiles for the axial liquid
velocity than that of CARPT. Considering the nature of the HPA measurements,
in terms of deducing the velocity from the time-of-flow data, rather than obtaining
direct velocity measurements, the present agreement between the two techniques is
considered as satisfactory.

The other two parameters in Equation C.1, oy and 3 denote the intensity and
type of mixing, respectively (Lubbert and Larson 1990). There appears to be no
specific dependence of  on gas velocity. On an average 8 = 0.55, indicating that
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mixing is diffusive in nature (Lubbert and Larson 1990). Turbulent mixing is typically

characterized by 8 = 1.5 (Lubbert and Larson 199). oy is referred to as the intensity
of mixing (Lubbert and Larson 1990). Results show that on an average o, decreases
with increase in gas velocity, which implies that the intensity of turbulence decreases
with increase in gas velocity. This is unexpected and contradicts with experimental
results from CARPT and other measurements (Menzel 1990; Mudde et al 1997). As
explained earlier, the experimental setup is extremely sensitive to electrical noise, due
to which the rate of rejection of a set of experimental data is quite high (more than
50 %). The recommended addition of salt to improve the electrical conductivity and
thereby reduce the noise, helps to a certain extent. However, the scatter in the data,
especially for og and f3, is still very high. This may be a possible reason for the lack of
meaningful results for these parameters (¢ and 3). Another reason is that a better
model may be necessary for using the time-of-flow results from HPA for the analysis
of turbulence in bubble column flows (Seinfeld 1986).
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Figure C.1: Schematic of HPA
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Table C.1: Model Parameters from Time-of-Flow Measurements Using HPA

Time

U, T Az | t,
cm/s | cm | cm | s

tm
S

0o

2 0.05| 3.0 | 4.0
3.05| 3.0 | 4.0
005] 85 | 7
3.05| 85 | 8.0

1500
1600
3000
3000

0.482
0.591
1.272
1.611

0.445
0.63
0.688
0.908

0.538
0.509
0.463
0.673

) 0.05| 85 | 5.0
3.056| 85 | 6.0
0.05]14.0| 9
3.05|14.0| 9

3000
3000
4000
4400

0.617
0.898
0.902
1.121

0.503
0.815
0.572
0.756

0.543
0.771
0.545
0.454

12.0 | 0.05 | 14.0 | 5.0
3.05|14.0| 7.0
0.05 | 19.0 | 4.0
3.05119.0 | 6.0

3600
4000
9500
7200

0.417
0.516
0.555
0.719

0.342
0.406
0.353
0.512

0.622
0.578
0.587
0.584
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Appendix D

Simulation of the Radiation
Intensity from Radioactive Tracer

Measured by a Shielded Detector

The intensity of radiation from a point source, recorded at a detector, is given by the

following expression:

n, = AF.BF.Q.n.S (D.1)

n,p is the count rate (counts/time) at the detector due to a point source. Each factor
is defined below.

The attenuation factor AF' is defined as

AF = eXp[_(/'l’glg + ,U/sllsl + ,Ufwlw)] (D2>

in which g, g and g, are the linear attenuation coefficients in the gas, the slurry
and the wall of the reactor, and [, [y and [,, are the effective distances or depths of
penetration in the respective media. The attenuation coefficient in the gas phase is
negligible when compared with the other phases and so the term for the gas phase
is neglected. [, takes into account the liquid (slurry) holdup. The calculation of Iy
depends on the nature of the holdup distribution. This assumes that the slurry is
pseudohomogeneous. If that is not the case and if the attenuation coefficients for the
solid and liquid are considerably different, then the term pugly must be replaced by

tily + psls, where subscripts s and [ refer to solid and liquid, respectively.
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The buildup factor BF represents the ratio of the intensity due to all photons to the

intensity due to unscattered photons alone. It is defined empirically using the Berger
equation (Tsoulfanidis 1983):

BF =1 =+ (asll-l'sllsl + awﬂwlw)[exp(bslusllsl + bwfufwlw)] (DB)

where a and b are the empirical constants depending on the medium and energy of
radiation.

The solid angle Q is the fraction of photons emitted by the source that is seen by
the detector. For a shielded detector, only the front circular surface of the detector

is exposed to the vy rays. For such a case, the solid angle is given by:

Q= %(1 _ cos(tan—}(R./d)) | (D.A4)

where R, is the radius of the circular face of the detector, and d is the distance
between the source and the detector.

n, the efficiency of the detector is taken to be a constant. S is the source strength.
This is proportional to the concentration of tracer at a given location.

The detectors used are 2” x 2" Nal crystals, shielded on their sides. The
various material constants at the energy levels of the source used, are tabulated in
Table D.1 (Tsoulfanidis 1983). The objective here is to estimate the spatial range
at a given axial position in the column over which the detector receives its signal.
The simulation is done for an assumed uniform distribution of tracer, and uniform
distribution of phases.

The medium is considered to be homogeneous, with uniform phase and tracer
distribution. Therefore the effective distance in the liquid (slurry) medium used in
Equation D.2 and D.3 is given as

Ly = la(1 — ¢,) (D.5)

where [,4 is the distance between the source and center of the detector. The source
strength or local activity is the same at all locations, since the concentration of tracer
(which is proportional to the local source strength) is uniform. Substituting for all the
factors into Equation D.1, the count rate recorded at the detector due to the individual

uniformly distributed point sources is calculated. The resulting spatial distribution
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of intensity (counts/time) at a given axial position is shown in Figure D.1. The

position of the detector relative to the intensity distribution is shown in Figure D.2.
The shaded region in Figure D.2 represents the volume (area) considered for the
contribution of the radiation to the overall radiation received at the detector. The
total radiation from this shaded region, which forms less than 1 % of the entire reactor
volume, is 90 % of the total radiation from the entire domain. Since the detector is
shielded on its sides, the contribution of radiation from different axial positions other
than the cross sectional slice (10 cm in thickness) at the axial position of the detector
is negligible. Therefore it can be assumed that the radiation measured at the detector

at a given axial position is a proportional to the concentration of tracer at that axial
location.

Table D.1: Constants for Radiation Simulation

tst | 0.065 cm™ | 1y, | 0.40 em™1
Qg 14 Qo 1.27
by 0.027 b 0.032

ov 3 TEEES Yw
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Appendix E

Calibration of Detectors for

Radioactive Tracer Experiments in
AFDU

This appendix discusses some of the issues regarding calibration of the scintillation

detectors for radioactive tracer measurements in the AFDU reactor, and provides

suggestions for improvement in the quality of tracer data.

E.1 Background Radiation

The background radiation is usually subtracted from the tracer response data of
each detector. This is done by subtracting each detector reading recorded before
the tracer experiment, with the syringe containing the tracer positioned along the
reactor at the injection point. This is not the true background, since before the tracer
experiment, some of the detectors close to the injection syringe see radiation from the
syringe. Once the tracer is injected into the column, the syringe is empty. Therefore
subtracting the reading from a detector close to the syringe results in a biased output.
This is seen from Figure E.1 (a) - (c). Fig E.1 (a) shows an arbitrary tracer response
as measured by a detector close to the injection point. The radiation seen by the
detector from the tracer in the syringe prior to injection is 50 counts/time. If 50 was
considered to be the background noise and sustracted from the detector response,
this would result in a response as shown in Fig E.1 (b). However, supposing the true
background is 10 counts/time, subtracting this would result in a tracer response as
shown in Figure E.1 (c).
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Normalizing each of these responses, in Figure E.1 (b) and (c), by its individual
maximum, as is done for comparison with model predictions, results in responses as
shown in Figure E.1 (d). The dotted line indicates the correct response, while the
solid line indicates the biased response due to improper background subtraction.
Therefore the background readings for the detectors should be taken before
loading the syringe with the tracer onto the column, i.e. the background reading
should truly be what the detector measures in the absence of any significant radiation
source. This then will be the lowest reading that the detector records.

E.2 Normalization of Detectors

The procedure used for normalization apparently consists of stacking all your detec-
tors (6” tall, 2’ wide pile) and placing in front of them a point source of 1 mC'i Co-60
approximately 1 m away, to create a field strength of Imrem. Noting the readings in
each of the detectors, the detector with the maximum counts is considered to have an
efficiency of 100 %. The efficiency of the other detectors is calculated by dividing the
individual reading by that of the detector with 100 % efficiency. These efficiencies
are then used to normalize each detector for a given experiment, after subtracting
the background radiation.

In the above procedure

1. The detectors when they are stacked up are not shielded.

2. In addition, the source is aligned along the axis of one detector in the center,
while for others it is totally off the axis.

The combination of 1. and 2. results in effects of solid angle, which is larger
for the detectors at the edge of the stack than for those in the center. Figure E.2
shows the view of the detectors seeing a point source. For the sake of clarity only two
detectors are shown. Detector A, for which the source is aligned along the axis of the
detector, "sees” the radiation with only its front circular face. In contrast detector
B is exposed to radiation on both its front and side. Thereby the intensity measured
by B (at the edge of the stack) is larger than A (in the center).

Calculation of the solid angle subtended by detectors A and B using dimensions
given above, show that for detector B the solid angle is 1.17 times larger than that of

A. 25 % of the solid angle for detector B comes from the contribution of the cylindrical
(side) surface.
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In practice, there is a whole stack of detectors. Therefore the path for the

v radiation between the source and the side (cylindrical) surface of detector B is
affected by the presence of other detectors. Nevertheless, detector B will still be
exposed to more radiation than A. This becomes important since, during the actual
tracer experiment all the detectors are shielded. Therefore the above procedure of
recording the radiation will lead to a bias, which may become significant during
normalization.

To rectify this, it is necessary to place all the detectors in a perfectly uniform
field. Ideally one must place all the detectors in a circle as shown in Figure E.3,
in the same horizontal plane. By placing an isotropic point source in the center of
the circle (Figure E.3), a uniform solid angle is subtended by each detector at the
source location. This rules out any sort of bias due to non-uniform “viewing” by each
detector and may result in better normalization of the detector responses. However,
this is not practical since the source is usually shielded, with a small angled window
for passage of the y radiation. Therefore, an alternative to the above ideal situation
is to place all the detectors on a ring similar to what is shown in Figure E.3, but
vertically, with the active surface of the detectors pointing downwards. This ring
should be held at a certain distance above the ground. Below the ring of detectors,
in the center of the ring, the source can be placed with its window directed upwards,
such that the cone beam of radiation from the source points upwards. Provided the
source emits isotrpically, all the detectors which are now symmetric with respect to
the source will be in a uniform radiation field and will have the same solid angle. If
however, the beam of radiation from the shielded source is only a fan beam, then
the detectors should be arranged in groups (of certain number) in a fan beam array
(similar to CT mode of scanning), for measurement of radiation.

As a precaution, it is necessary in the above procedure to rotate the source, or
the ring of detectors about its center of radius, to ensure that the source is isotropic.

To summarize, the normalization must be done by recording the detector re-
sponses in a completely unifrom field strength with uniform “viewing factor” for each
detector. This should be done after background subtract.

E.3 Remnant Tracer in Injection Line

Any remnant tracer in the injection lines must be removed, in order to get a true

estimate of the tracer distribution in the reactor and the exit line at large times.
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All the above described effects contribute to unequal intensity measurements

by the detectors at large times. With the suggested changes, better measurements
should be obtained, with uniform readings at large times indicating uniform tracer

distribution. In fact, if indeed there is settling of solids (and therefore the tracer),
this should also be seen from the tracer data.

(a) ()
300 - : 300 :
Q [}
£ E
2200} £ 2007
= 5
@] o
Q Q
> 2
‘Z 100} % 100}
= =
Q [}
E W’J g jJ
O L L O \AJ "
0 200 400 600 0 200 400 600
time, sec time, sec
(c) (d)
300 - 1 ,
E 208}
e g
*g 200+t £ 0.6}
Q o)
= S04
= L =
% 100 M}J é 02},
E 2
.o— O L
0 1 " N N
0 200 400 600 0 200 400 600

time, sec time, sec
Figure E.1: Effects of the type of Background Subtract on Radiation Measurements
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Figure E.2: Top View of Detectors Positioned for Measurement to Calculate Detector
Efficiencies

detector

[

Figure E.3: Top View of Proposed Arrangement of Detectors for Measurement to
Calculate Detector Efficiencies
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Appendix F

Radioactive Liquid Tracer
Response Measurements in the
AFDU During Methanol Synthesis

F.1 Individual Detector Responses at Two Axial
Measurement Levels for Run 14.6, Wall Injec-
tion at Level N1
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Appendix G

Application of RCFDM in the
Presence of Homogeneous Liquid

Phase Reaction

In this appendix the behavior of the recycle with cross flow and dispersion (RCFD)
model in the presence of homogeneous liquid phase reaction (nonlinear kinetics) is
studied. The objective is to compare the RCFDM with the one dimensional Axial
Dispersion Model (ADM), using model parameters obtained for the same RTD. For
this purpose, a set of two parallel irreversible reactions is considered:

248 P rp=k0? (G.1)
ABS o= k0, (G.2)

The operating conditions of Myers et al. (1986), whose experiments were
conducted in a column of diameter 19 cm, at a superficial gas velocity of 10 cm/s and
a liquid velocity of 1 cm/s, are considered here. The reported mean residence time, for
a gas-liquid dispersion height of 244 cm, is 203 5. The model parameters for RCFDM
: D1=285 cm® /s, D3=440 cm?/s and D,; = 34 cm?/s, are obtained from CARPT/CT
experiments as described in Chapter 6.2. The axial dispersion coefficient, obtained
by fitting the ADM (without reaction) to the tracer response data of Myers et al.
(1986), is Dy, =352 cm?/s.

The behavior of the RCFDM is studied for various values and ratios of ki and
ko. Results are tabulated in Table G.1. The conversion of reactant A is given by
X4 = (Ca, —Cyx)/C4,). Both RCFD and ADM vyield near about the same results
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for both conversion and selectivity with only minor discrepancies. This suggests that

with model parameters for the same RTD, both the models yield similar predictions
for the conversion and selectivity for the set of parallel reactions considered here. It
is noted, however, that for all cases the assumption of complete backmixing reduces
the conversion. For situations involving close to complete conversion, the assumption

of complete backmixing will result in considerable over-sizing of the reactor.

Table G.1: Predicted Conversion and Selectivity for Various Values of k; and ks

ky 1 ko CSTR RCFDM ADM
cc/mol. s | 1/s X4 X4 | Cp/Ca, | X4 | Cp/Ca,
0.0006 0.0018 | 0.307 | 0.321 0.2585 | 0.3186 | 0.2571
0.05 0.15 0.968 | 0.998 0.9696 | 0.9973 | 0.9630
0.015 0.005 | 0.6661 | 0.7244 | 0.3482 | 0.7184 | 0.3466
0.0018 0.0006 | 0.2256 | 0.2895 | 0.0894 | 0.2877 | 0.0890
0.01 0.001 | 0.5317 | 0.5756 | 0.0972 | 0.5708 | 0.0967
0.05 0.05 |0.9155 | 0.9730 | 0.8598 | 0.9690 | 0.8527
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