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Chapter 3

The CARPT Facility

3.1 History of Radioactive Particle Tracking

Radioactive particle tracking was first used by Kondukov et al. (1964) who used six
scintillation detectors to track a radioactive tracer particle in fluidized beds. The
lack of a proper data acquisition system prevented them from obtaining quantitative
results. Meek (1972) developed a radioactive particle tracking with six detectors to
track solids in a turbulent liquid. The detectors were mounted on an axially moving
carriage, in order to maintain the particle within the control volume of the detectors.
Since the carriage cannot always keep pace with the tracer particle, the particle often
went out of the control volume leading to loss of data. In addition, the use of only
a few detectors and analog processing resulted in low resolution. Lin et al. (1985)
were the first to develop a novel computer aided radioactive particle tracking facility
to study solids motion in a fluidized bed. An array of 12 detectors was used. They
showed the existence of multiple circulation cells at low gas velocities, and a change
in the direction of solids motion with an increase in gas velocity. Moslemian (1987)
improved the data acquisition system of Lin et al. (1985) by introducing digital pulse
counters, resulting in faster sampling rates. Devanathan (1991) applied radioactive
particle tracking, using a neutrally buoyant particle, to study the liquid phase motion

in bubble columns. Details of the technique are discussed in the following sections.
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3.2 Working Principle

The use of radioactive particle tracking in bubble columns was first applied by De-
vanathan (1991) who adapted the Computer Automated Radioactive Particle Track-
ing (CARPT) technique to study the motion of the liquid phase in bubble columns.
A single radioactive particle (the isotope employed was radioactive Scandium, Sc*®,
emitting v radiation) was used that was neutrally buoyant with respect to the liquid
phase phase being tracked. During an experiment, as the particle moves about in the
column tracking the liquid phase which is agitated by the passage of gas, the position
of the particle is determined by an array of scintillation detectors, that monitor the «
radiation emitted by the particle. The radiation intensity recorded at each detector
decreases exponentially with increasing distance between the particle and the detec-
tor. In order to estimate the position of the particle from the radiation intensities,
calibration is performed prior to a CARPT experiment by placing the particle at var-
ious known locations and mdnitoring the radiation recorded by each detector. Using
the information acquired, calibration curves are established that relate the intensity
received at a detector to the distance between the particle and the detector. Once the
distance of the particle from the set of detectors is evaluated, a weighted regression
scheme is used to estimate the position of the particle at a given sampling instant in
time. Thereby a set of instantaneous position data is obtained that gives the positions
of the particle at successive sampling instants. Time differentiation of the successive
particle positions yields the instantaneous Lagrangian velocities of the particle, i.e.,
velocities as a function of time and position of the particle. From the Lagrangian
particle velocities, ensemble averaging is performed to calculate the average velocities
and thereafter the various turbulence parameters of the liquid.

The above is a brief introduction to the working principle of the CARPT tech-
nique for measurement of the fluid dynamic parameters of the liquid phase. In what

follows, different aspects of the technique and the facility at the Chemical Reaction
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Engineering Laboratory (CREL) are discussed, highlighting the improvements and

additional changes that have been made as part of this work.

3.3 CARPT Setup

A schematic of the bubble column and CARPT setup is shown in Figure 3.1. The
hardware (support structures) of the facility was machined to accommodate both
CARPT and CT. The difference in the hardware between the two techniques lies in
the configuration of the detectors. In the CARPT technique the detectors are strate-
gically positioned around the column, spanning its entire length (Figure 3.1). Each
detector unit is a cylinder 2.125” in diameter and 10.25” long, and contains an active
cylindrical Nal scintillation crystal (2” by 2”). The total number of detectors used
is varied depending on the size of the column. Typically 16 (14 cm column) to 26
detectors (44 cm column) were used. The detectors are held by aluminium support
structures which are in turn supported on four vertical Unistrut bars positioned at
90° intervals around the column.
such that they project at 22.5° angles from the Unistrut bars. Therefore, the detec-
tors can be held at eight different angular positions with respect to the axis of the
column. Each detector is held on the aluminium support structure such that the axis
of the detector is perpendicular to that of the column and the circular face of the
detector is tangential to the wall of the column at a given location. The positions
of the detectors are measured in cylindrical coordinates. For each detector, with its
circular face tangential to the wall of the column, it is thus assumed that the axis of
the detector is along the radial coordinate of the column. Hence, accurate alignment
of the detectors to conform with cylindrical geometry is necessary, since any misalign-
ment leads to error in location of the particle position. Steel wire braces allow the
position of the detectors on the aluminium supports to be adjusted both in terms
of radial and angular positions. These support structures can also be moved axially

on the Unistrut beams thereby allowing different axial positions for the detectors.



61
The general configuration of the detectors is shown in Figure 3.2. Two detectors

are positioned at a given axial level, at 180 degree angle to each other, i.e., the two
detectors are made to face each other, placed on either side of the column. These
two detectors form a pair. At the next higher level, the angular position éf the next
pair of detectors is increased by 45 degrees, from that at the level below. Such a
configuration ensures equal spacing between all the detectors in all directions. This
is the optimum configuration since it enables the particle to always be close to a set

of detectors anywhere in the column, except close to the distributor, below which no

detectors are placed.
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Figure 3.1: Schematic of the CARPT Facility

Bubble columns of three internal diameters, 14 ¢cm, 19 ¢cm and 44 cm were
used in this investigation. All the columns are made of Plexiglas. The plenums

used for distribution of the gas and liquid into the column are constructed with
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Plexiglas as well. All experiments were conducted at atmospheric conditions using

compressed air and tap water. Specific details of the experimental conditions along

with the distributors used are given in Chapter 4 in which the experimental results

are discussed.
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Figure 3.2: Configuration of Detectors in CARPT Experiments

3.4 Radioactive Particle

Scandium-46 was used as the radioactive source in all the CARPT experiments. Sc-
46 has a half life of 83.5 days and exhibits two photopeaks at 0.889 MeV and 1.13
MeV. Since Scandium is of high density (2.99 g/cm?), in order to make a tracer
particle that is neutrally buoyant, the small scandium particle is embedded in a
polypropylene sphere of outer diameter 2.36 mm, along with a pocket of air, that
results in a composite (pcﬂypropylene, scandium and air) sphere that has a density
very close (e.g. 0.9995 to 1.0005 g/cm?) to that of water, i.e. 1. The method of tracer
preparation is similar to that employed by Devanathan (1991). However, in the

present method, instead of using a solid cylinder (0.7 mm by 1.0 mm) of scandium as
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done by Devanathan (1991), several smaller particles (about 10 of 100 1 m size) were

embedded in the polypropylene sphere, in order to provide more freedom for adjusting
the weight and thereby the density of the tracer particle, which was done by trial and
error. Hereafter, ’parficle’ refers to the composite tracer particle (polypropylene,
scandium and air).

Care was taken to initially make the particle of slightly ‘lighter’ density (0.95
g/cm?) than that of water. Subsequently the particle was sent to the Reactor Research
Facility in the University of Missouri at Columbia, for irradiation to approximately
250 p Ci (for the larger column of 44 cm diameter a target strength of 400 p Ci was
used). Once irradiated, and prior to the experiments the particle was coated with
refractory paint which served several purposes. The first was to adjust the density
of the particle in order to match, as close as possible the density of the particle
with that of water (p, ~ 0.9995 g/cm?). Polypropylene is mildly hydrophilic and
slowly imbibes water, as a result of which the particle becomes heavier with increased
exposure to water, i.e., over 5 to 6 hours. Coating the polypropylene with paint,
therefore, provided a protection for the particle against water, and thus helped in
maintaining the density of the particle over the entire duration of the experiment.
Finally, the coating of paint also served to reduce the solid liquid interfacial tension
and improve the wetting characteristics of the particle, thus lowering the possibility
of bubbles sticking to the surface of the particle during an experiment. Such an event
reduces the effective density of the particle, which is undesirable.

For all the experiments performed as part of this investigation, the density of
the particle was adjusted in order to yield a rise velocity of 0.1 to 0.25 cm/sec. Visual
observation of the response of the particle to mild agitation in liquid indicated that

the particle was able to follow the liquid well.

3.4.1 Ability of Tracer Particle to Follow the Liquid

In the present CARPT experiments, the measurement of the liquid phase fluid dynam-

ics in a bubble column using a neutrally buoyant finite size spherical tracer particle
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(2.36 mm) as a liquid tracer, is based on the assumption that the particle ideally

follows the fluid element. The extent to which the particle actually follows the lig-
uid. phase plays an important role in the accuracy of the measurement of the liquid
velocities using this technique. Close matching of the density of the particle (0.9995
g/cm?) with that of water ensures that the particle is neutrally buoyant (rise veloc-
ities of 0.1 to 0.25 cm/s) However the finite size of the particle makes it differ from
a liquid element, unable to sample the small scale eddies. Particle Reynolds number,
defined as Re, = d,v,s/v, ranges from 2 to 6, where d, is the particle diameter and
Ups 1s the settling/rise velocity of the particle in water.

The theory of particle motion in a turbulent flow field is complex. The be-
havior of particles of various sizes and densities is of interest in sediment transport,
atmospheric dispersion and flow visualization. A brief background on the equation
governing the motion of spherical particles in a viscous turbulent fluid, and some
approaches used for solution of the governing equation, which are relevant to the
existing situation, are discussed.

The motion of a spherical particle in a turbulent fluid was first described by

Tchen (1947) as an extension of the Basset-Boussinesq-Oseen (BBO) equation:
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The equation is a force balance and considers the acceleration of the particle (term 1)
to be affected by the drag force in the Stokes regime (term 2), the pressure force on
the sphere due to the acceleration of the fluid (term 3), the added mass term (term 4)
and the Basset history integral which refers to the particle motion for all times from
the initiation of motion of the particle (term 5). This equation has been modified
by many (Hjelmfelt and Mockros 1966; Maxey and Riley 1983) and used by various

researchers in several investigations, among which those that are of relevance to the
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present study are discussed here. Most of the interest in studying particle motion in

a turbulent flow field (gas phase) is restricted to very small heavy particles (p,/p, ~
1000), which is not of interest here. ,

Devanathan (1991) used the BBO eqﬁation considering steady flow and neglect-
ing the Basset term. He showed that for a particle size of 2.36 mm and a difference
of 0.01 g/cm? in density between the particle and the liquid, the maximum difference
in the velocities (particle and liquid) is 1 cm/sec.

In the above analysis only steady flow was considered, and in addition, the
Basset term was neglected. It has been shown that for a particle suspended in a fluid
with varying frequencies of mofion, the Basset History term becomes important (Mei
et al. 1991; Maxey and Riley 1983; Hjelmfelt and Mockros 1966), by assisting in
maintaining parity between the particle and fluid motion. The Basset history term
is hence, considered important for this analysis. The analysis can be extended by
considering a spectrum of velocities at different frequencies similar to the works of
Hjelmfelt and Mockros (1966), and Kuboi et al. (1974).

Hjelmfelt approached the solution of the original Equation 3.1 (including all
the terms) by expressing vy and v, in terms of their Fourier integrals, and relating the
particle velocity in terms of the fluid velocity by means of an amplitude ratio (AR) and
a phase angle (PA). The ratio of the respective energy spectra was also obtained. The
expressions were obtained in terms of the density ratio (p,/ps) and Stokes number
N; (W} This definition of the Stokes number is the inverse of the conventional
definition (\/m) Hjelmfelt’s approach has been experimentally verified by Lee
and Durst (1982), who performed experiments with particles in turbulent duct flow.
Following the approach of Hjelmfelt (1966) for the existing conditions of the CARPT
experiment, with the particle size and density ratio mentioned above (Stokes regime
of flow is assumed), calculations show that the AR reaches 1.001 and PA, 0.0005,
at Ny, = 0.020. Using the expression for Stokes number, the maximum frequency at

which the particle can be taken to follow the liquid up to 99.0% (amplitude ratio) is
30 Hz.
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Meek (1972) performed an experimental and theoretical investigation to study

the behavior of particles of various densities and sizes in a turbulent liquid flow
field, using the modified BBO equation. He showed that the ratio of the turbulent

fluctuating velocities of the particle to the liquid, in isotropic homogeneous flow can

be obtained as:

,UIQ 1 2
e _ 1t0p (3.2)
V7 1+p
where (3 is defined as
3ps
= 3.3
5= 5 (3.3)

and parameter p is the ratio of the particle response time to the Lagrangian integral

time scale.
Tp d;z, 1
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(3.4)

Although the parameter p, for the case of the CARPT tracer particle, will be relatively
large (order of 1), since p, = 0.9995, 8 = 1.0007, which ensures that the ratio of the
fluctuating velocities is very close to unity, vl’,z / v}z = 1.0003. This gives an estimate
of the magnitude of the rms velocity of the particle in comparison with that of the
fluid. The rms velocity represents an integral of the energy spectrum [;° E(w)dw,
and hence covers the entire frequency range.

A combination of the above analyses shows that for frequencies < 30 Hz, which
represent the large scale eddies, the particle will be able to closely follow the liquid
phase, and the measured particle fluctuating velocities can be considered to be those of
the liquid phase. For the higher frequencies, due to its size, the particle will not follow
the liquid very closely. However, such frequencies correspond to small length scales
and therefore low energy in the power spectrum (for example, see Hinze (1975) for
the energy spectrum related to single phase flow turbulence). Recently, Mudde et al.
(1997) reported the energy spectrum for two-phase flows in bubble columns, based on
LDA measurements, in the bubbly and transition flow regime. The peak in the energy

spectrum was shown to occur at 0.1 to 0.5 Hz, depending on operating conditions.
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The cascade of energy in the inertial subrange was shown to follow the -5/3 power

law of Kolmogorov, for the cases reported. Calculation of the energy content of the
velocities, based on Lagrangian measurements using CARPT, also indicate a peak in
the energy in the range of 0.1 to 1 Hz. Although the Lagrangian based spectrum is
different from the traditional Eulerian energy spectrum, in the power dependence of
energy on frequency, qualitatively, the two spectra show similar trends, in as much
that the energy content decreases with increase in frequency (Tennekes and Lumley
1972). Using the results of Mudde et al. (1997) for the energy spectrum obtained by
LDA, one can show that the energy content of the velocities with frequencies greater
than 30 Hz is less than 2 % of the energy of the velocity fluctuations between 0.1 and
30 Hz. Hence, the velocities with frequencies greater than 30 Hz do not contribute
significantly to the overall fluctuating rms velocities.

If one considers a small scandium particle, 100 pm in radius, with a density of
pp = 2.99, then § = 0.429 and the particle response time is 7, = 0.012 s. This yields
v v = 0.955, which indicates that the particle rms velocity is 2.2 % lower than the

fluid rms velocity.

3.5 Signal Processing and Data Acquisition

The CARPT facility developed by Devanathan at the Florida Atlantic University is
of the third generation. Some aspects of the data acquisition in the third generation
CARPT have been improved in order to achieve faster data transfer rates and, hence,
increase the sampling frequency capacities of the technique. This has lead to the
fourth generation CARPT, which was designed and developed at the Chemical Reac-
tion Engineering Laboratory (CREL) by Yang (1992). Details of the data acquisition
steps involved are described below.

A schematic of the data acquisition system and signal processing for the exist-
ing setup is shown in Figure 3.1, along with a schematic of the bubble column facility

during CARPT experiments. The system is equipped to use up to a maximum of
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32 scintillation detectors. Each scintillation detector containing 2” by 2”7 Nal crystal

with an integral ten stage photo-multiplier tube (PMT) is used to detect the gamma
radiation emitted from the scandium particle. The function of the'scint_illation de-
tector is to convert the energy from the incident gamma radiation into deteétable
light. When a gamma photon is incident on the Nal crystal of the detector, it re-
leases light photons which get multiplied on the photocathode of the photo-multiplier
tube. Biasing of the cathodes of the detectors (1kV) is provided by two high voltage
power supplies (Canberra, Model 3002D). Anode pulses are generated at the output
of the PMT. One such anode pulse is produced for every gamma photon impinging
the crystal of the detector. The pulses produced at the PMTs are still low and are
further amplified by passing through timing filter amplifiers (Canberra 2111). The
amplifiers accept both positive and negative pulses from the detectors and deliver
output pulses in the range of + 5V. Each timing filter amplifier has independent
adjustments for the differential and integral time constants in their RC-CR circuits.
These knobs enable us to shorten the tail of the pulse and choose a suitable amplitude
for the pulse, respectively. The integral time constant thereby allows one to adjust
the intensity of the signal detected (final reading on the computer), for a given source
strength. The power to the amplifiers is fed by the NIM/BIN power supplies (Can-
berra 2000). The raw signal from the amplifiers contains both the primary emissions
of the gamma radiation from the source and undesired secondary emissions that arise
due to interaction of the gamma radiation with the medium. Since most of the sec-
ondary emissions are characterized by fairly low energy radiation, their contribution is
effectively removed by feeding the signals from the amplifiers to discriminators. The
threshold on the leading edge discriminators (LeCroy 4413) is set to eliminate signals
below that threshold. The threshold for the discriminators is continuously adjustable
from 15 mV to 1 V by software control. For the CARPT experiments using Sc*5, a
threshold of 15 mV, which is the lowest level, is found to be adequate for removing
most of the secondary emissions. For each input signal that exceeds this threshold,

the discriminator issues a logic pulse, thereby registering only those signals (photons)
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that have a certain maximum energy. The pulses from the discriminator are counted

using a multichannel 24 bit scaler, which is a binary counter. The scaler has a tempo-
rary buffer for each channel to store the accumulated counts. A list sequencing crate
controller with 8K first in - first out (FIFO) memory acts as a buffer when contents of
the scaler are emptied at user specified rates. When the FIFO is half full a CAMAC
(Computer Automated Measurement and Control) crate controller transfers the con-
tents from the FIFO to the hard disk of the computer via a General Purpose Interface
Bus (GPIB IEEE 488). The transfer of the data from the scaler to the FIFO memory,
and from the FIFO memory to the computer hard drive proceed in parallel with no
data errors or loss. The advantage of the CAMAC is that it allows a wide range of
modular instruments to be interfaced to a standardized crate. The data acquisition
program for the fourth generation CARPT, written in C language utilizes the fast
access memory in the CAMAC crate. It can therefore be used to sample at very high

frequency rates of up to 500 Hz. In the present experiments, the sampling frequency

is set at 50 Hz.

3.6 Calibration

For a given source strength, the intensity of radiation received at a detector from
the radioactive particle, decays exponentially with distance between the detector and
the source, due to factors such as attenuation and buildup. This is also a complex
function of column geometry and the medium being traversed, and hence the gas
holdup. In order to estimate the location of the particle from the radiation intensity
counts measured at the detectors, calibration is necessary under the given operating

conditions (in-situ calibration).

3.6.1 Calibration Procedure

Calibration experiments for CARPT involve positioning the radioactive tracer particle

at several hundreds of known locations throughout the column and measuring the
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intensity counts received at the detectors. The calibration device (Figure 3.3) used

for performing the calibration essentially consists of a hollow frame that is fixed onto

the top flange of the column, such that the center of the frame is aligned with the

rod
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Figure 3.3: Calibration Device

axis of the column. Placed on this frame is a circular plate that is positioned between
four guiding wheels which allow for the plate to rotate about the axis of the column.
Marks on the frame are made to indicate various angular positions. A one inch wide
slot is machined on the plate which passes through the center of the pl'ate, extending
from one end of the plate to the other. Fixed on the plate, in alignment with this
slot, is a UniSlide control. Mounted on the UniSlide is a clamping device to hold a
stainless steel rod 1.25 cm in diameter. The entire rod consists of four sections that
can be screwed together with perfect alignment, thus allowing for the use of only
certain sections of the rod depending on the (height) requirement at a given time.

The bottom tip of the rod is machined with a taper, at the tip of which the tracer
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particle is held with a plastic sheet. The clamping device is precisely machined to

ensure that the rod is vertical, especially when the particle on the tip of the rod is
positioned at the bottom of the column. Vertical movement of the rod allows for
the axial positioning of the particle, while the UniSlide control knob determines the
radial position of the particle. The rotation of the plate provides for the angular
movement. The above device allows for the precise movement of the particle to
known locations in the column, using which in-situ calibrations were performed for
the various experimental conditions investigated. During a calibration, for a given
position of the particle, 256 to 512 samples (intensity counts) are acquired and the

data is averaged to obtain mean counts at each of the detectors.

3.6.2 Calibration Curves and Tracer Particle Location -

Accounting for Effects of Solid Angle

Once calibration is performed, this yields a set of data for each detector that relates
the intensity counts measured to the distance between the particle and the detec-
tor. As mentioned earlier, the intensity in a given medium decays exponentially with
distance between the particle and the detector. The exact functional form of this
relationship is complex and depends on many factors such as attenuation of gamma
photons directly reaching the detector by the medium traversed, buildup of the pho-
tons caused by the interaction of the primary photons with the medium causing the
photons to get deflected from their original path, the solid angle between the particle
and the detector, the efficiency of the detector, etc.

The most significant factor is the attenuation of the radiation that results in
the exponential decrease of intensity with distance. Consider a single beam of gamma
ray traversing a medium of width ‘d’. The fraction of the ray that passes through the

medium without any interaction is given by Beer’s law:

I =1, exp(—pd) (3.5)
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where p is the attenuation coefficient of the medium being traversed, I, is the intensity

at the source and I is the intensity measured at distance ‘d’. For an isotropic source
such as the CARPT tracer particle which emits gamma radiation in all directions,
this simple relation becomes more complex, and all the other factors mentioned above
become important. However, since attenuation is still the dominant factor affecting
the intensity measured, for experimental purposes, the intensity is considered to be a
one dimensional function of distance between the particle and detector, and expressed

using Taylor’s expansion of Beer’s law:

I=£,() (3.6)

where f, is a polynomial function for each detector (Devanathan 1991). Thus, the
intensity-distance curves are fitted with polynomial functions of varying degrees, using
which a set of distances of the particle from the detectors can be estimated. From
these distances the position of the particle is calculated by least squares regression.
Such a relationship, as used by Devanathan (1991), assumes that the intensity
is a monotonic function of distance. This is true if attenuation was the only factor
affecting the intensity detected, which is the case when using collimated detectors such
as in CT (Kumar 1994). However, in CARPT, due to the low strength of the tracer
particle, the active surface of the detector comprises both the front circular surface
and the side cylindrical surface. In such cases, the intensity cannot be considered
as a function of distance only, as illustrated in the graph for a set of calibration
data in Figure 3.6, where the same values of the intensity (x-axis) correspond to
more than one value of distance. This is primarily due to effects of solid angle,
which is discussed in greater detail shortly. The ultimate method of handling the
complex behavior of the radiation, is by modeling the various interactions of the
gamma radiation to simulate the intensity measured at the detector for a given source
strength and medium. This is a complicated task, as it involves in depth modeling
of the radiation and its interaction with the medium and detectors, and is beyond

the scope of this work. Modeling of the gamma ray interactions using Monte Carlo
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simulations has been successfully performed by Larachi et al. (1994) who have used

radioactive particle tracking to study the behavior of solids in ebullated beds. Such
an effort of modeling the radiation measured at the detector from the source particle
by Monte Carlo simulations, is currently underway at CREL by Yang and Gupta
(1996).

For the present study an improvement over the original algorithm for estimat-
ing particle positions is made by taking into account the effects of solid angle, and
thereby modifying a one dimensional relationship of intensity versus distance, to a
two dimensional dependence of intensity on the distance and solid angle. The nature

of the influence of solid angle and the necessary modifications made to account for

these effects is discussed below.

Effects of Solid Angle

The solid angle subtended by the detector at the location of the source is defined as
the ratio of the nﬁmber of photons emitted per second within the space defined by
the contours of the source and the detector, to the total number of photons emitted
by the source. In other words, it is the fraction of number of photons emitted by a

point isotropic source that enter the detector.

number of photons ”seen” by the detector
W= : -
number of photons emitted by the source

(3.7)

For a point (isotropic) source along the axis of the detector (with a circular face), the

solid angle can be calculated using a standard geometrical expression (Tsoulfanidis

1983). From Figure 3.4,

W= As
 47R2

(3.8)

2 p6
A, = / dA = / / " R2sinfdfd = 2m RX(1 — costy) (3.9)
0 0
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Figure 3.4: Figure for Calculation of the Solid Angle Between an Isbtropic Source
and a Detector with a Circular Aperture, with the Source on the Axis of the Detector

The effect of the solid angle becomes important when the particle does not lie
on the axis of the detector. In such cases computation of the solid angle becomes
complex. The source particle now ‘sees’ both the front face (circular) of the detector
as well as the cylindrical side (see insert in Figure 3.5). Consequently, a given distance
of the particle from the detector could result in different intensities measured by the
detector, depending on the solid angle. In other words, there are multiple values of
the distance that result in a particular value of the intensity, depending on the solid
angle. This results in the presence of arcs in the distance vs intensity calibration data
as shown in Figure 3.6.

Monte Carlo simulations have been performed (Wielopolski 1977; Verghese et
al. 1972; Gardner and Verghese 1971) for computation of solid angle subtended at a
point source by circular discs and cylindrical surfaces, and algorithms are available
for this purpose. In the present work, the algorithms of Gardner and Verghese (1971)
and Verghese et al. (1972) have been used to compute the solid angle of the particle
placed at various locations with respect to the detector. The graph in Figure 3.5

shows the solid angle as a function of distance for various perpendicular heights (the
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Figure 3.5: Simulations of Distance Vs Solid Angle for Various heights Corresponding
to Various Particle Positions

perpendicular distance from the particle to the plane defined by the circular face of the
detector). These results can be directly compared with the data from the calibration
experiment (typical results shown in Figure 3.6), in which arcs are seen, which suggest
that the arcs arise due to the effects of solid angle. These effects of solid angle have
to be properly accounted for in estimating the position of the particle, since it is clear
that the intensity measured at the detector is not a function of distance alone. The
manner in which this is done is described below.

The essence is to modify the algorithm to estimate the distance of the particle
from each of the detectors with greater precision. Once the best estimate of the
distances is obtained, the position of the particle is calculated by the weighted least
squares approach originally formulated by Lin et al. (1985) using linear regression
theory (Draper and Smith 1981). In an ideal situation a set of three distances would
be sufficient to calculate the x,y,z coordinates of the particle. However, due to the

random noise in the radiation data, which arises from the statistical nature of the
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Figure 3.6: Distance Vs Intensity in a 14 cm column (Calibration data for detector
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gamma ray emission, a redundancy in the number of detectors is used to minimize
the error in estimating the particle position using a weighted least square approach.
A weighting matrix is used to weight each detector with a factor that is proportional
to the intensity of the radiation measured by that detector, which corresponds to the
reliability of the detector measurement. Since this method of weighted least square
regression, originally proposed by Lin et al. (1985), is the same as used by Devanathan
(1991) and others, the details involving the calculation is omitted here.

The procedure for accounting for the effects of solid angle in estimating the
distance of the particle from each of the detectors is discussed below. The tracer
particle, during calibration, is placed in an orderly fashion at different locations in
the column so as to cover the entire flow field. Typically, a number of (z,y) (or
(r,0)) locations are chosen, for a given axial (z) level, which constitute a horizontal
cross-sectional plane. During calibration, the particle is placed at all the selected
(z,y) positions for several such axial locations. The resulting intensity counts versus
distance data when plotted result in a graph as shown in Figure 3.6. In Figure 3.6

all the points in an ‘arc’ correspond to particle positions that belong to a particular
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cross sectional plane. Qualitatively, Figure 3.6 can be compared with Figure 3.5

which shows the distance versus solid angle. For the particle positions in a cross-
sectional plane, although the variation in distance between particle and detector is not
much, a relatively significant variation of the solid angle causes an increased variation
of the intensity measured (x-axis in Figure 3.6), resulting in the ‘arcs’. Therefore,
by associating the particle at a given location with an ‘arc’ in the distance versus
intensity curve, it is possible to account for effects of solid angle, in better estimating
the distance between the particle and detector. This is done by formulating a two

step procedure described below.

1. In the first iteration, the entire set of calibration data is used to obtain the
intensity-distance curves by cubic spline fitting. Using these calibration curves
for each of the detectors, a first estimate of the particle position is made using

the non-linear least square regression method (Devanathan 1991).

2. In the second iteration, only a section of the calibration data is used. This set
of data corresponds to the particle positions in a cross-sectional plane at a given
axial level which is within £5 mm of the estimated axial position of the particle.
The data constitutes an ‘arc’ in the intensity vs distance calibration curve and
is fitted to a second order polynomial function. If the estimated position of
the particle is greater than 5 mm from a calibration plane, interpolation of the
data is done to obtain the required set (‘arc’) of data. The distances evaluated
in this step are more accurate than those from the first step, since only the
segmented curve corresponding to a particular ’arc’ of the data is used. This
results in a different functional dependence of the distance on intensity, when
compared with step 1. In this manner, the effects arising due to solid angle are
accounted for. This refined set of distances is used to re-estimate the position

of the particle, which is the final estimated position.

This two step procedure significantly decreases the error in estimation of parti-

cle position. For example, the average error in estimating the position of the particle
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is reduced from 1 c¢m to 0.3 cm, in a 19 cm diameter column. To successfully use this

method, it is important to get the best possible first estimate of the particle position
(and thereby axial position). The best fit of the data to a monotonic function for the

dependence of intensity on distance is obtained using cubic splines (NAG software).

3.6.3 Error in Estimating Stationary Particle Positions

Calculation of the error is based on measurements made during the time of calibration,
by placing the particle at several known locations in the column, other than the
calibration positions, at a given gas velocity. Typically, the particle is placed at 15 to
20 different known locations that span the entire flow domain. In addition to these
points, the intensity counts measured during calibration, that serve as calibration
data, are also used for recalculating the particle position.

For each position of the particle, the intensity counts that are acquired over
256 to 512 sampling instants at a frequency of 50 Hz, are averaged to yield the mean
counts. The set of mean intensity counts for all the detectors is used to estimate
the position of the particle using both the two-step iterative algorithm described
above and the single step method based on the entire calibration curve. The error in
estimation along the z, y and z directions are used to determine the overall location
error, calculated as e = \/m .

A comparison of the errors obtained using the two methods of estimation is
given in Table 3.1 for randomly selected conditions. As seen in Table 3.1 the error is
reduced from an average of 1.4 cm to less than 0.4 cm by the two step procedure. The
error close to the distributor is much higher than in the main section of the column.
The reason for this is due to the asymmetry in the medium near the distributor,
caused by the presence of the flange, especially when the particle is close to the wall.
Placing detectors below the distributor is of no avail, and only worsens the situation,
due to the exceptionally high attenuation in the medium between the particle and the
detector in this region, caused by the presence of the plenum (solid plexigas). This

results in significantly low counts measured by the detectors below (or the same level
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as) the distributor near the plenum, despite the close proximity of the particle to

these detectors, which cannot be captured by the intensity vs distance curves. Hence,
the positions close to the distributor (z < 5 - 8 cm), result in higher errors. For
this reason, the column averages reported in Table 3.1 only consider the data away
from the distributor. Results indicate that the two-step procedure for estimating
the particle position considerably reduces the location error, and such a procedure is

necessary for better estimation of the particle positions.

Table 3.1: Comparison of Errors in Estimating Particle Location

Col. Dia. | Sup. Gas Average Error
Velocity | One-step | Two-step

cm cm/s cm cm

14 24 1.55 0.26

14 12.0 1.31 0.28

19 12.0 1.38 0.31

The column average location error under various operating conditions consid-
ered is reported in Table 3.2, along with the average error close to the distributor.

There is no effect of gas velocity on the mean location error in a given column size.

Table 3.2: Errors in the Estimation of Stationary Particle Position Using the Two-
Step Iterative Algorithm, Under Various Operating Conditions

Col. Dia. | Gas Velocity | Col. Average | Std. Dev. | Error Near
cm cm/s Error, cm cm Distr., cm
14 2.4 0.26 0.171 1.2

4.8 0.22 0.167 1.5

9.6 0.28 0.235 1.1

12.0 0.28 0.198 1.5

19 2.0 0.28 0.139 0.7
5.0 0.27 0.165 1.2

12.0 0.31 0.281 0.7

44 2.0 0.73 0.681 2.5
5.0 0.78 0.754 2.7

10.0 0.76 0.652 2.8
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However, the error increases for the largest column diameter of 44 cm. This is due to

the increase in the size of the column which causes a greater spread of the calibration
data as shown in Figure 3.7. The hollow circles in the figure denote the experimental
calibration data points for the 44 cm diameter column. The solid lines are repre-

sentative data for a 14 cm column, which are drawn to denote the increase in the
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Figure 3.7: Calibration Data of Distance versus Intensity in a 44 cm Diameter
Column  (solid lines are  representative data for a 14 cm diameter column)

spread of the ‘arcs’ in the 44 cm column. Due to this, the error in estimating the
initial estimate of the particle position, using step 1, is higher than that for a small
diameter column, thereby resulting in an increase in the final error (using the two
step procedure). This increase of error with column size is an inherent characteristic
of the present least square regression approach, based on the distance versus intensity
functional representation. In order to decrease the error in the data, the radiation
at the detectors would have to be modeled using Monte Carlo based simulations to
account for the spread in the data. Nevertheless, for the present situation, the relative
error of estimation, i.e., &, from column to column is still the same at ~ 3 %, which

is deemed acceptable.
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3.7 Computation of Fluid Dynamic Parameters

from CARPT Instantaneous Position Data

CARPT experiments are typically conducted for a long time (15 to 40 hrs, depending
on size of the column) during which the v radiation emitted by the radioactive tracer
particle, as it follows the liquid, is measured at every sampling instant at a frequency
of 50 Hz. The instantaneous positions of the particle at every sampling instant are
then estimated from the radiation intensity measurements at all the detectors, using
the algorithm described above. Therefore CARPT experiments first result in a set
of instantaneous position of the particle over the entire duration of the experiment.
Time differencing of these positions yields the instantaneous Lagrangian velocities of
the particle, as a function of time and position of the particle. These instantaneous
Lagrangian velocities are then used to calculate the time averaged velocities and the

various turbulence parameters through out the flow field in the column.

3.7.1 Sampling Compartments

In order to obtain the time averaged fluid dynamic parameters as a function of posi-
tion in the column, the column is first divided into sampling compartments of certain
dimension, depending on the size of the column. There are several ways for discretiz-
ing the column as shown in Figure 3.8. Method ’A’ which was used by Devanathan
(1991) consists of dividing the column, which is essentially a cylinder, in equal divi-
sions along the r, # and z directions.

Due to the cylindrical coordinate system, this method of discretization results
in unequal volumes of the sampling compartments with varying radial location. Hence
the compartments in the center of the column, 7 ~ 0, are much smaller than the
compartments close to the wall. As a result, for a given duration of a CARPT
experiment, the compartments in the center always have very poor statistics relative
to the ones close to the wall. In order to improve the statistics at the center, one

would have to run the experiment for much longer times.
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A. constant Ar, A® B. Constant compartment volume

W&

C. constant Ar, variable A9
for approximately equal volume

Figure 3.8: Column Discretization for CARPT Data Processing

In view of this shortcoming, Devanathan (1991) suggested an alternative method
of discretization, method 'B’, in which the divisions along the radial direction are var-
ied in order to maintain similar volumes throughout the cross-section. However, such
a discretization results in very small Ar close to the wall, almdét the size of the
tracer particle, ~ 0.2 cm, and therefore reduces the occurrences close to the wall
significantly, although the compartment volumes are about the same.

In order to address the above problem, the new discretization method labeled
‘C’ in Figure 3.8 is used in which the radial and axial divisions are kept constant.
A is varied with radial position in the column, so as to maintain reasonable uni-
formity in cross-sectional areé of each compartment, and thereby volume. By using
such a discretization, the statistics (number of occurrences of the particle) in each
compartment is maintained reasonably uniform. This reduces the time of experiment

required to get good statistics throughout the column, in compartments both at the

center and at the wall.
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The number of divisions assigned to the column varies with size of the column.

Table 3.3 shows the assignment of the compartments for the three column sizes used.
Ar and Az are constant as a function of ‘v’ and ‘z’, respectively. A6 varies with
radial position. The compartment assignments shown in Table 3.3 were found to be
the optimum choice, which was a trade-off between the size of each compartment and

the total experimental time.

Table 3.3: Assignment of Compartments to Each Column for CARPT Data Process-
ing

Col. Dia. N, Ny® N, Azb
cm A, = -]f% cm
14 8 2,4,4,8, 70 | 1.7-1.9

8,8,8,16
19 8 2,4,4.8, 70 | 1.7-1.9
8,8,8,16
44 12 2,4,6,8, 100 | 1.7-1.9
10,10,12,14, »
16,18,20,24

entries in this column correspond to each radial com-
partment starting from 1 to N,
byaries with dispersion height

Local Mean Velocities

Time differencing of subsequent positions of the particle yield instantaneous La-
grangian velocities. Let z1, y1 and 2z be the coordinates of the particle at a given
sampling instanf (position 1 and time 1) and xa, y2, 22 be the coordinates at the next V
sampling instant (position 2 and time 2). The midpoint of (z1,91,21) and (22,Y2,22)
is calculated as z, y, z (and a corresponding r, 8, z in cylindrical coordinates). The
compartment to which (z, y, z) or (r, 6, 2) belongs is calculated, by determining
the compartment indices of the midpoint (i, 7, k). The veloéity calculated by time
differencing of (z1,y1,21) and (z2,Y2,22), as shown in the equations below, is assigned

to this compartment with indices ¢, j and k.
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iy, k) = 2 (3.10)
o 0,)r
u.(i, 5, k) = Zzgtzl (3.12)

In such a manner the instantaneous velocities can be calculated for every sam-
pling instant, as the particle moves around the column following the liquid. Inter-
pretation of the results for the velocity measurements is done by ensemble averaging,
which involves averaging the instantaneous velocities measured in a compartment
over the entire duration of the experiment. As discussed earlier, in Chapter 2 this
ensemble averaging is equivalent to the phasic averaging applicable for modeling.

If N, is the number of times the midpoint of two successive particle positions
falls in a cell with indices (7,7,k), then, the ensemble averaged velocity for the com-
partment with indices (7,7,k) is

v

Upn(is i k) p=T1,0,2 (3.13)

MH

. 1"
;L_I’P(Zajvk‘) = ':N-_

n=1

Once the ensemble or time averaged velocities are calculated, the various turbulence
parameters, such as the turbulent shear stress, normal stresses and kinetic energy can

be calculated, from the fluctuating velocities. The fluctuating velocity is defined as

u;(i,j, k) =up,(i,5,k) — Tp(1, J, k) (3.14)
Typically, the turbulent stress is calculated as

v

uly (i, 4, k)l (3,3, K) (3.15)

MII

——rre 1"
%uﬁ;(%%k) = Fv

1

n

where again p and ¢ denote the components of the velocity in cylindrical coordinates.
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Azimuthal Averaging of Data

If Ty is the number of azimuthal divisions for a given radial locations, the azimuthal

averagéd velocity is obtained from

@m0, 4, )N, (i, 5, k)

Uy(1, k) = :
plF) >4 N, (4, 5, k)

(3.16)

Results for the various turbulence parameters are similarly averaged.

Typical comparison of results after CARPT data processing, using different
types of compartment discretizations, described earlier, are shown in Figure 3.9 for
the time averaged axial liquid velocity and the turbulent kinetic energy in a 14 cm
column. The different discretizations all result in the same trend for the profiles of
the velocity and the turbulent kinetic energy. However, results for the case with finer
discretization show more scatter. This arises due to the relatively poor statistics in
this case (denoted by the inverted triangle in Figure 3.9), since the volume of each

compartment is reduced by 4 when compared with the data for the coarser discretiza-

tion, represented by the circle in

2

Tovtira 2
Yigure 3.9. All

=

the three cases are considered
same experimental data, obtained for a total time of 18 hrs. Comparison of methods
'A’ and ’C’ (refer to Figure 3.8) for the same N, and N, in Figure 3.9, shows that
the two are very nearly the same, except toward the center of the column for the
turbulent kinetic energy. Near the center, when using method ’A’, with equal 0 divi-
sions for all radial locations, the volume of the compartment is considerably reduced,
thereby lowering the statistics in this region. The optimum choice of compartment
discretization is the one with the best statistics, denoted by the circle in Figure 3.9,

which is also reported in Table 3.3.

CARPT Computation of the Lagrangian Correlation Coefficients

The above parameters are all based on an Eulerian framework (velocities are denoted
by u), i.e., the parameters are related to measurements at fixed position or com-

partment. With the CARPT technique, essentially the Lagrangian velocity of the
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Figure 3.9: Effect of Compartment Discretization on the Circumferentially Aver-
aged (a) Time Averaged Axial Liquid Velocity and (b) Turbulent Kinetic Energy
in a 14 cm Diameter Column, U, = 2.4 cm/s, z = 60 cm '

particle, v(t,r,0, 2z), is measured, and this can be used to compute the Lagrangian
statistics such as the Lagrangian auto- and cross-correlation coefficients.
The Lagrangian correlation coefficient for IV, statistically independent exper-

iments is defined by the following equation:

. — 1 e . . -
R,p(i,7,k,t) = UI’,(O)UI’J(t)i’jJC =N Z vl',’n(z,j, k, O)’U;’n(l,j, k,t) (3.17)
exp =1

where v’ is the fluctuating Lagrangian velocity, defined as

W (i, 3, b, £) = vp(d, 4, by £) = Ty (3, 4, K, ) (3.18)

v(i,j, k,t) denotes the ensemble average of the velocities measured at time ¢ for ex-
periments initiated in compartment (3, j, k). |
Let us consider a compartment with indices (,7,k). When the particle ‘first’ en-

ters this compartment a Lagrangian experiment is initiated for this compartment. The
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velocity measured for the first particle displacement for this experiment is v, (3, 5, ¥, 0),

where p denotes the component of the velocity. This is the Lagrangian velocity at
zero time, ¢ = 0, for this experiment initiated in compartment (i, 7, k). The veloc-
ity of the moving particle is calculated at every subsequent time step, for a certaiﬁ
period of time, which is determined by the time it takes for the correlation to drop
to zero. This constitutes one experiment for a given compartment to give v(i, 7, k, t).
Another experiment for the same compartment is initiated when the particle, again
enters the compartment for the ’first’ time. ’first’ implies that this experiment is
statistically independent from the previous experiment, which is ensured when the
time interval between this tracer occurrence and the occurrence in which the previous
experiment was initiated, is greater than a prescribed limit, 7j,,. The time T}, is the
time required for the two sequences of data to be statistically independent. Typically
these T}, = 20 time steps. In a similar manner several experiments are initiated

and recorded to calculate the auto- and cross-correlation coefficients as defined by

Equation 3.17.

the particle passes through each compartment, experiments have to be initiated and
recorded, for the entire duration of the run and all the compartments in the col-
umn. The present algorithm for the computation considers all the compartments
simultaneously, and thereby greatly reduces the computational time from the previ-
ously existing program (Devanathan 1991). A flowsheet of the algorithm is presented
in Appendix B. These Lagrangian correlation coefficients are used to calculate the

turbulent eddy diffusivities, details of which are discussed in Chapter 4.

3.8 Wavelet-Based Filtering of CARPT Data

3.8.1 Statistical Nature of v Radiation

Owing to the quantized nature of the v photons, the intensity of the radiation emit-

ted by the radioactive tracer particle exhibits continuous fluctuations in time. The
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emission of v photons from a radioactive source is a statistical process which follows

a Gaussian distribution, with the mean n, and standard deviation /n_, where n, is
the number of counts emitted per unit time. The standard error which is defined
as the standard‘ deviation/mean counts, is found to vary inversely with the inten-
sity of counts (Tsoulfanidis 1983), as expected in a Gaussian distribution. Ideally
three detectors with precise signals are sufficient to locate the particle. However,
since the radiation intensity measured at a given sampling instant is not exact and
exhibits variations due to the statistical fluctuations, a redundancy of detectors is
employed and a weighted least square algorithm is used as a first step in determining
the approximate particle position followed by position refinement, as discussed in the
previous section. The detector that is the closest to the particle measures the maxi-
mum radiation and, therefore, exhibits the least standard error (1/,/n.), and is hence
weighted the most, and vice-versa. The weighted regression algorithm helps reduce
the error in position estimation and results in reasonable estimates of particle posi-
tions. However, the fluctuations in the radiation intensity data are still “transmitted”
to the i
neous position of a stationary particle estimated over 512 sampling instants. The
power spectral density of the instantaneous position data in Figure 3.10 (b), shows
the characteristics of white noise, indicating that the statistical fluctuations in the
gamma radiation gets transmitted as white noise to the instantaneous position data.
The apparent continuous movement of the actually stagnant particle results in the
generation of “spurious velocities”, i.e., non-zero velocities for a physically stationary
particle. For example, Figure 3.11 (a) shows the spurious velocities calculated for
a stationary particle in a 14 cm diameter column. Consequently, the instantaneous
velocities measured have partial contribution from the statistical fluctuations in the
source particle emission. Time or ensemble averaging of the instantaneous velocities
in each compartment eliminates these source fluctuations (since the fluctuations have
a Gaussian distribution with zero mean). This is reflected in the negligible mean

spurious velocities calculated (see Figure 3.11), of the order of 0.1 cm/sec, which are
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very small when compared with the actual liquid velocities monitored (10 cm/sec to

60 cm/sec). Hence, the noise in the data does not affect the time averaged velocities.
However, the fluctuations (spurious velocities) do contribute to the instantaneous ve-
loéities of the particle as it follows the liquid during an experiment, and thereby the
fluctuating velocities and the estimated turbulence parametérs of the liquid. This

causes an over-estimation of the turbulence quantities that are measured.
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Figure 3.10: Fluctuations in Stationary Particle Position (Taken from Calibration
Data in a 14 cm Column, U, = 9.6 cm/s)
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Figure 3.11: Spurious Velocities Calculated from the Data in Figure 3.10, Mean =
0.05 cm/s, rms velocity = 26.4 cm/s

Filtering the White Noise in the Data

In order to obtain better and accurate estimates of the turbulence parameters it is
therefore necessary to filter the instantaneous position data and thereby eliminate,b or
reduce to the best possible extent, the contribution o
instantaneous velocities measured.

Traditional Fourier transform filtering (FFT) was first attempted using a third
order low-pass Butterworth filter. The cut-off frequency for the low-pass filter was
chosen as 20 Hz. An estimate of the cut-off frequency is based on the size of the
tracer particle used (2.36 mm). Earlier in this chapter it was shown that the tracer
particle, due to it finite size, can follow the liquid well, up to a frequency of about 30
Hz. Results of FFT filtering using a low-pass filter are shown in Figure 3.12 (a). It
can be observed from the figure (note the highlighted regions enclosed in boxes) that
the resulting filtered signal is unable to capture the sharp peaks of the original signal.
As a result, these sharp changes that characterize the flow are removed as noise (refer
to bottom part of Figure 3.12 (a)). Increasing the cut-off frequency does not improve

the situation as it results in residual high frequency components of the white noise

in the signal. Another factor to be considered is that the actual cut-off frequency
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required may vary with position in the column as discussed above. This suggests

that traditional Fourier transform filtering using a low pass filter is not quite suitable
for the purpose of filtering CARPT data, considering the non-stationary nature of the
data with its sharp inflections and peaks, which are characteristic of the dynamics of
the liquid in the system.

Wavelet transformation, which is a time-frequency based method is a suitable
alternative and has the distinct advantage over the Fourier transform technique, as it
can be used to analyze nonstationary and localized data, which exhibit varying fre-
quency characteristics with time. This is illustrated in Figure 3.12 (b). The bottom
part of the figure shows the noise that is filtered using the wavelet transformation
method. This resembles white noise that is present in CARPT data. On the other
hand the noise filtered using Fourier transform based filtering contains some charac-
teristic features of the original signal and does not represent white noise.

Wavelet analysis is used as a tool in this work to filter the white noise from
CARPT data. In what follows, a brief introduction to wavelet transform and wavelet
packet decomposition is given followed by a description of the al
filtering CARPT data. To demonstrate the suitability of the method for filtering
CARPT data and thereby obtaining a more reliable estimate of the fluid dynamic
parameters, an experiment has been conducted with a controlled motion of the ra-
dioactive tracer particle. This enables a prior: knowledge of the trajectory of the
particle and provides a reference against which the results from CARPT experiments
subject to wavelet packet filtering can be compared. A quantitative estimate of the
errors involved in the estimation of the particle position is obtained and the extent
to which the intrinsic noise in the data is removed is demonstrated. Thereafter, a
few typical bubble column results after wavelet filtering are presented and compared

with the results obtained prior to filtering.
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Figure 3.12: Comparison of Classical Fourier Transform and Wavelet Analysis tech-
niques for filtering CARPT data

3.8.2 Wavelet Analysis
Some basic concepts of wavelet analysis

Wavelet transform maps a time domain signal onto a time-scale plane (scale is the
inverse of frequency). The transformation is performed using a family of wavelets,

Yap(t), generated by the dilation and translation of a function (), called the basis

or mother wavelet, i.e.,

Yap(t) =] a |72 ¢(t—;—b), a,b€R (3.19)
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is a family of wavelets, where a and b are the dilation and translation parameters,

respectively. These functions have prescribed smoothness, are well localized in time
and frequency and form a well behaved basis (Daubechies 1988). Each wavelet has a
specific time-frequency localization. Parameters a and b determine the comprom‘ise
between time and frequency. For instance, wavelets of high frequency, i.e., large a,
are narrow in time, while wavelets of low frequency are broad in time. As a result
wavelets are able to “zoom-in” on shortlived high frequency phenomena, and “zoom-
out” on longlived low frequency phenomena. Wavelet transformations, thus work
well for cases of filtering non-stationary signals clouded with white noise, and are still
able to capture the sudden changes in the signal. There are a number of wavelets
with different properties available in the literature, for example, Chui-Wang wavelets,
Coiflets, Daubechies wavelets, etc. (for example, see Chui 1992; Palavajjhala et al.

1994). In this investigation Daubechies orthonormal wavelets (Daubechies 1988) are

-used.
Wavelets are broadly classified as continuous wavelets and discrete wavelets.
The term wavelet transform is very generic and can be categorized as continuous

wavelet transforms and discrete wavelet transforms which use continuous wavelets
and discrete wavelets, respectively. The theory regarding wavelet transforms and
various aspects of wavelet analysis and their applications can be found in Chui (1992),
Daubechies (1992), Wickerhauser (1991) and Joseph and Motard (1995). In what
follows the aspects of wavelet analysis that are used in this work is described. A brief
introduction along with the underlying basic concepts to discrete wavelet transforms
(DWT) and wavelet packet decomposition (WPD) is first presented.

Discrete wavelet transforms involve the projection of a data set onto discrete
wavelets to give discrete wavelet coefficients. This is represented as :
%

(f ¥ma) =272 [ f(ep(2 7™t~ m)at (3.20)

where the dilation and translation parameters, ¢ and b, in Equation 3.19 are dis-

cretized respectively as a = af', b = nbyal’ (ap (=2) and by (=1) are constants).
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The inner product defined in Equation 3.20 for various values of m,n are called the

discrete wavelet coefficients. The reconstruction of f(t) from these coefficients for

orthogonal wavelets is given by

FO) = 22 Yaa®{f(2), Ymn(®)) (3.21)

mnez

DWT is a special case of Wavelet Packet Decomposition (WPD). In WPD, a
library of wavelet packets are generated, from which a variety of bases can be extracted
to represent the signal. The construction of wavelet packets can be represented in a
hierarchy as shown in Figure 3.13. Using two filters, H, a low-pass filter and G, a

band-pass filter, the entire library of wavelet packets is generated using a recursive

scheme (Wickerhauser 1991) as follows:

o & Hapy; /w(t)dt =1 (3.22)

Vor E Huyp; oy = ﬁ'): h(i)ws (2t ~ 4) (3.23)
Yorer & G Yopyr = ﬁ;g(j)@/ff(?t —J) (3-24)
Vs, gp = Y50 — 27°1) (3.25)

where s, f,p denote the scale, frequency and position indices, respectively. h and g
are the filter coefficients associated with the low-pass and band—passvﬁlters H and
G, which are characteristic of the wavelet function used. The nature of the wavelet
packets generated depend on h and g. There are a variety of wavelets available,

of which Daubechies’ (1988) orthonormal, compactly supported wavelets are most

popular.
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Figure 3.13: Hierarchy of Wavelet Packets in Wavelet Packet Decomposition

The decomposition of the signal onto these wavelet packets constitutes WPD.

As in the case of DWT, the wavelet packet coefficients are given by :

Moo = s sp) = 270 [ Fthr(p — 27t)dt (3.26)

where A is the wavelet packet coefficient. Alternatively,
Ast12rp = HAs p (3.27)

Astr2f+1p = Ghs fp (3.28)

The resulting library of wavelet packet coefficients contains redundant information
from which a variety of bases can be chosen. The best representation is the one that
has the least number of significant coefficients. There are several ways of identifying
a best basis representation using some type of information cost. The most appealin.g
is the one that has the least information entropy. An additive measure of entropy

(Coifman and Wickerhauser 1992) is defined as

€=—Zl)\i |2 11’1'/\, 12 (329)
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where A; are the wavelet packet coefficients. The more randomness in the signal,

the greater its entropy, and therefore the greater the number of coefficients required
to represent the signal accurately which means larger information cost. This con-
cept has found applications in denoising a noisy signal, data compression and speech
scrambling, among others. This can be illustrated by the following example

Consider a signal such as a sinusoidal wave, f;=sin(10xt), at a frequency of
10 Hz, with an amplitude of 1, such that the signal energy (F f,(i)?) = 500 units,
where N = 1024 is the length of the signal. This periodic signal represents a coherent
structure. Using the wavelet packet decomposition and the best basis representation,
this signal can be well represented with a minimum of 90 wavelet packet coefficients.
On the other hand, if one considers a signal characterizing white noise, f,, with the
same energy level of 500, a best basis representation of this white noise requires at
least 750 coefficients (largest coefficient is 1.8 in magnitude, as opposed to 28 for the
sinusoidal wave). This illustrates the difference between a coherent signal, which can -
be represented by a few large wavelet packet coefficients, and white noise which is
an incoherent signal and can only be represented by a large number of small wavelet
packet coefficients.

It is of interest to apply the wavelet packet decomposition and the best basis al-
gorithm in denoising or filtering of noisy signals. The idea is to extract coherent parts
present in the signal, i.e. the signal features with good time-frequency localization,
by adopting the method of adapted waveform denoising proposed by Coifman et al.
(1993). The signal is first transformed to wavelet packet coefficients from which the
best basis coefficients are selected. A part of the signal represented by a few largest
~ coeflicients is used to extract a coherent part of the signal. The remaining incoherent
part is decomposed several times to extract all the coherent parts remaining in it. All
the individual coherent parts, thus extracted, are superimposed to give the filtered
signal. The incoherent part remaining at the end is rejected as noise. The advantage

of the algorithm is that exact characterization of the process is not required. This
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method is similar to the Matching Pursuit Algorithm discussed by Mallat and Zhong

(1992).

In the present work, the waveform denoising algorithm (Coifman et al. 1993)
described above is adopted with some modiﬁcations. Since the signal to noise ratio
of the data is high, 95:5 , i.e., the energy level of the noise in the signal is low, a
suitable threshold for the magnitude of the wavelet packet coefficients is chosen, by
which a large number of coefficients with magnitudes below the threshold are set to
zero. These coefficients, having low energy, are considered to represent the noise in

the signal and are thereby removed.

3.8.3 Wavelet Packet Filtering of CARPT experimental data

The noise present in the radiation intensity data, gets transmitted to the estimated
particle position data in Cartesian coordinates, P(z, v, z), as shown earlier. It is found
that the noise in each coordinate is white noise, uncorrelated with each other. Filter-
ing can be applied either to the radiation intensity data, measured by each detector
following which the particle position is estimated, or directly to the instantaneous
position data. Since the results from the two methods are equivalent (Figure 3.14),
the latter approach of filtering the position data is chosen as it is more efficient in
computing resources.

Wavelet packet decomposition using Daubechies’ (1988) orthonormal, nearly
symmetric wavelets is employed for this analysis. The algorithm for analysis and
filtering of the data is explained below. The original signal (CARPT instantaneous
position data) is divided into data sets of length N = 2F; L[ = 10, N = 1024.
For each data set of length N sampled at a constant frequency, the wavelet packet
decomposition, described earlier, is performed and subsequently the best basis rep-
resentation, based on minimizing the entropy of the coefficients (Equation 3.29), is
obtained. The wavelet packet coefficients (wpc) in the chosen best basis are arranged
in descending order of amplitude (Jwpc|). The fraction of the coefficients correspond-

ing to those with the largest magnitude, i.e., the first few significant coefficients,
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Figure 3.14: Comparison of Results Obtained from Filtering the Intensﬁ:y Data versus
Position Data

represent the coherent part of the signal while the remaining weak coefficients, of low
magnitude depict the noise. The energy level of the noise in the data is very low
and constitutes typically less than 5 % of the total signal energy. This information is
obtained by analysis of the CARPT calibration data, as described below.

The objective of the wavelet filtering is to extract only the coherent part of
the signal leaving out the noise. This is achieved by selecting a signal threshold
for the wavelet packet coefficients, ‘st’. All the coefficients below this threshold are
set to zero. Only the fraction of coefficients with magnitudes larger than the set
threshold are retained, re-ordered and reconstructed to yield the filtered signal. The
filtering algorithm hence requires a predetermined value for the signal threshold, ‘st’.
The choice of ‘st’ depends on the extent of noise in the data, z(t), y(t) and z(¢).
An initial estimate of st is obtained using the experimental data for a stationary
particle measured during the calibration. Fine tuning of ‘st’ is then done, to ensure
that the noise filtered from the data satisfies the characteristics of white noise. The
power spectral density is used as the basis for verification. White noise has a uniform
distribution of energy over all the frequencies (maximum is the Nyquist frequency)

sampled. The value of ‘st’ is adjusted such that the filtered noise shows a uniform
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power spectrum, with no peaks (the presence of peaks is an indication that a part of

the actual signal is removed). The process of tuning is done with several randomly
chosen data sets to arrive at the final value of st for the data, which is then used
for filtering the instantaneous position data. The initial estimates of ‘st’, from the
calibration data, are usually slightly higher than the final tuned value. The values of
st can vary for x, y and z. Typically st is anywhere between 0.7 to 2.0, increasing
with column diameter, and is found to be dependent on the operating conditions as
well. At very high gas velocities, the effect of the fluctuations from the bubbles seems
to increase the noise in the data. The filtering results are, however, insensitive to
minor variations in the threshold value (£ 0.05 to 0.15).

Filtering using the above described algorithm ensures maximum extent of re-
duction of the noise in the data, resulting in a smoother version of the signal and
simultaneously helps in retaining the sharp features arising from the nature of the
flow in the system. The algorithm is implemented using the commercial software

WAVBOX! on MATLAB. The wavelet toolbox provides the necessary subroutines
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In order to verify the applicability and effectiveness of the algorithm for filtering

the noise from the experimental data, the algorithm is tested with data produced from

experiments for a controlled motion of the tracer particle.

3.8.4 Experiments with the Controlled Movement of the

Particle

Experimental Setup

The experimental setup principally consists of two motors, a screw conveyor and a
plate as shown in Figure 3.15. Motor I is secured at the bottom of the structure and is
geared to a screw conveyor that is positioned vertically. The screw conveyor suppbrts

a vertical frame on top of which the plate is mounted. The shaft of motor II, which is

IWAVBOX is a wavelet toolbox (commercial software) written by Taswell for a MATLAB
environment
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fixed to the top of the plate, is connected to a smooth, circular disc. The radioactive

particle to be tracked is fixed to the tip of a thin Plexiglas rod attached to the disc.
Operation of motor II causes the particle to move in a circular motion. The maximum
frequency of motion is 3 Hz. The distance of the particle from the axis varies from

7 to 8 cm. Simultaneously motor I causes the plate held to the frame to move

High frequenc Hz) motion

y (3-5
(’ disc
Ed
particle

i I tepper motor II

S
“ low frequency motion
(0.1-0.2Hz)

il

guiding wheels

<« frame
gear
Ll*Stepper motor [

Figure 3.15: Experimental setup for controlled motion of particle

vertically in “up and down” motion (with frequencies of the order of 0.1 Hz). The
maximum vertical distance traversed by the particle is 6.4 cm. By this arrangement
the particle is made to move in a spiraling 3D motion, with high (3 Hz) and low (0.2
Hz) frequencies. The two motors are driven by microprocessors, which are interfaced
with a personal computer. This arrangement ensures the precision with which the
particle moves. A trolley system with guiding wheels provided for guiding the frame
helps in minimizing the vibration of the setup. The entire structure is supported on
the plenum centered between the detector supports (not shown in figure). Sixteen
strategically positioned detectors are used for detecting the 7 radiation from the
source particle. Calibration is first performed using various particle positions that

cover the entire range of experimental runs. Subsequently the experimental runs are
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performed. In each run, the speed of the two motors is varied, thereby varying the

velocity of the particle. Six such runs were performed.

Experimental Results

The details of the experimental runs carried out are shown in Table 3.4. The experi-
ments are conducted in air. Motor I moves the particle in a linear vertical motion, i.e.
along the z axis in Cartesian coordinates. Motor II moves the particle in a horizontal
two dimensional circular trajectory, i.e. in a z —y plane. A parametric representation

of the trajectory of the tracer particle is given as:

Ty = T + rpcos(bo —1%) + rpcos(2mwst) (3.30)
Yr = Yo + rpsin(bo 181(‘).0) + rpsin(2mwst) (3.31)
Zy = 2o +wit (3.32)

where z. and y. are biases in position due to experimental constraints. r, is the
radius of curvature which the particle traverses. 6, is the initial angular position of
the particle. ws is the frequency of rotation of motor I. w; gives the displacement of
the particle per unit time and is related to the rpm of motor I. Motor I is programmed
to move 800 steps, first in the clockwise direction, followed by the counter clockwise
direction. vThis periodic motion is repeated several times. 125 steps in the clockwise
direction is equivalent to 1 cm. This induces a frequency of about 0.1 Hz in the 2
direction of motion. Based on the trajectories, the existing Lagrangian velocities v,,,
vy, and v, are calculated.

The instantaneous position data z,, ¥, and z, resulting from CARPT experi-
ments for the controlled motion of the particle are subject to wavelet packet filtering
as discussed in the previous section (st, = 0.9 to 1.1, st, = 0.9 to 1.1, st, = 1.0 to 1.3),
yielding filtered results z¢, yf and zy. Thereby the particle velocities from CARPT
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Table 3.4: Details of Experimental Runs for Controlled Motion of Particle

Run No. | 7, | 6p, deg w1 Zo zf Wy

cm cm/sec | cm cm | 1/sec
Run1 |6.964 | 315 2.0 112.21 | 118.61 | 2.75
Run2 |7.989| 270 2.0 112.81 | 119.41 | 0.00
Run3 |7.180| 315 2.0 112.21 | 118.61 | 1.00
Run4 |7.180| 315 2.0 112.21 | 118.61 | 2.00
Run5 |7.180| 315 2.0 112.21 | 118.61 | 2.75
Run6 | 7989 | 315 2.0 112.21 | 118.61 | 1.50

measurements (sampling frequency is 50 Hz) before filtering, v,,, vy, and v,,, and
after filtering, v, , vy, v.,, are obtained. The results are analyzed by comparing the
magnitude of the error in positions and velocities in each direction. For this purpose

the root mean square (rms) error is defined as

: L IENG =g
rms error in position j = \/—1—\]—\[— j=x,9,2 (3.33)
Ny, — v, )2
rms error in velocity v; = \/2—1——(—@—]}-\[——?&)— J=1T,Y,2 (3.34)

where IV is the number of samples considered. The error in velocity gives the spurious
velocity of the particle.

Figure 3.16 (a) shows the actual trajectory y; for a period of 10 sec, for Run 5
reported in Table 3.4. Figure 3.16 (b) is a comparison of the error in estimating the
successive y positions of the particle. Figures 3.17, 3.18 and 3.19 show the velocities
of the particle in all the three directions along with the errors before and after filtering.
The particle trajectory projected on the horizontal x - y plane is essentially a circle.
Such a trajectory for two cycle periods is shown in Figure 3.20 for Run 5, before and

after filtering, along with the actual trajectory. A summary of the results for the
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entire set of runs is presented in Table 3.5 which reports the errors in position z, y

and z, and spurious rms velocities, before and after filtering.

(a) Actual trajectory.in "y"
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Figure 3.16: Results for RUN 5 : trajectory y of particle
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Velocity "v_y" of particle
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particle
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Velocity "v_z" of particle
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Figure 3.19: Results for RUN 5 : Velocity v, and error in estimation of velocity of
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It is evident by examining the results, that there is significant improvement in

the accuracy of estimation of both the positions and velocities of the moving particle.
The residual error (spurious rms velocities) after filtering the data is 2-5 cm/sec. This
répresents an average of 75% (maximum of 95 %) reduction in.the level of noise in
the data. With regard to the magnitude of the rms fluctuating velocities of the liquid
in bubble columns, which are an order of magnitude higher, the reduction in error is
considered substantial.

The experiment for the controlled motion of the tracer particle thus provides
a basis for the validation of the CARPT technique in estimating the trajectory and
velocities of the moving particle, using the wavelet analysis technique for filtering the

intrinsic noise in the instantaneous position data.

y, cm
o

filtered
actual
° unfiltered

410 P S TS S S N T |
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Figure 3.20: Circular Trajectory of Particle for Run 3

Due to experimental constraints, it has been possible to perform experiments

with the controlled motion of the particle only at fixed frequencies. It is also of



108

Table 3.5: Errors in Estimation of Particle Position (cm) and Velocity (cm/sec)

Run | Dir- Error in Position, cm Error in Velocity, cm/sec
ect- | Before Filtering | After Filtering | Bef. Filt. Aft. Filt.

No. ion | rms | min/max | rms | min/max rms rms
Run1| x |0.32|-1.17,1.12| 0.19 -0.7,0.6 20.5 4.16
y |036] -15,1.2 | 0.26 | -0.75, 0.8 20.01 4.66

z 049 -1.7,14 | 0.25 | -0.7,0.74 30.36 1.68

Run2| x }0.31]-0.97,1.03 | 0.03 | -0.04,0.03 16.99 0.07
y |0.28]-1.10,1.15 | 0.007 | -0.01, 0.02 17.94 0.04

z |040 | -1.3,1.03 | 0.25 | -0.79, 0.5 24.29 1.05

Run 3| x |0.32]-1.16,1.13 | 0.21 -0.7,0.9 19.3 3.2
y |031] -1.2,1.2 | 0.21 | -0.85,0.8 18.0 3.6

z |047|-15,175| 0.17 | -0.9,0.6 28.9 1.34

Run4| x ]0.32|-1.08,1.12 | 0.22 | -0.75,0.86 19.5 4.8
y 032 -1.5,1.25 | 0.23 | -0.7,0.75 19.0 4.5

z |046| -1.414 | 0.21 | -0.65,0.61 29.0 1.38

Run5| x | 03 |-1.11,1.32 | 0.19 | -0.9,0.66 20.2 5.4
y |029} -0.89,0.9 | 0.16 | -0.61,0.65 18.7 3.8

z 1047 -1.6,1.4 | 0.22 | -0.87,0.72 29.2 1.56

Run6| x |0.31]|-1.16,1.08 | 0.21 -0.8,1.0 19.78 4.18
y |0.28]-1.14,1.11 | 0.14 | -0.84, 0.82 18.69 3.51

z |0.37]-1.09,1.21 | 0.20 | -0.86,0.72 | 25.73 1.48

interest to illustrate the capability of the present filtering algorithm for the case

of time series data containing varying frequencies, which are characteristic of the

instantaneous position data measured from bubble column experiment. This is done

by numerically generating a time series with varying frequéncy components, and

superimposing on this signal white noise that is characteristic of the fluctuations

present in the instantaneous position data from CARPT. The signal considered for

this purpose is defined by the following equation:

fen(t) = An(sin(

t2 .

™ .
T) + Sll’l(

1

t3
200

)

(3.35)
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The two terms on the right hand side of Equation 3.35 are referred to as ’chirp’ signals,

(the first is a linear ’chirp’ and the second is a quadratic ’chirp’). The square and
cubic variation of time in the first and second term, respectively, induces a frequency
variation in the time series f (t). White noise, n(t), that is typical of the noise present
in CARPT data is superimposed on f(¢) resulting in a noisy signal, f,(¢).
=0.1

Fa(t) = fonlt) +n(t) ol (3.36)

The wavelet filtering algorithm is applied to f,(t), using a threshold of st=1.0, which
is arrived at by studying the wavelet packet decomposition of the noise, n(t), as

described earlier. The noisy signal and the filtered signal are shown in Figure 3.21.
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Figure 3.21: Filtering of the Numerically Generated Noisy 'Chirp’ Signal
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The root mean square error in the signal is reduced from 0.44 cm to 0.109

cm after filtering. Effects of filtering are apparent in Figure 3.22 which shows the
velocity computed by time differencing the signal. The root mean square error in
the velocity is reduced from 19.9 cm/s, before filtering, to 3.19 cm/s after filtering.
This demonstrates the suitability of the proposed wavelet-based filtering algorithm
for filtering signals similar to CARPT data, with varying low and high frequency

components.
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Figure 3.22: Error in the Velocities Computed by Differentiation of the Chirp
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3.8.5 Wavelet Filtering of CARPT Data in Bubble Columns

The wavelet filtering algorithm is applied to all the bubble column experimental data
obtained as part of this work. The thresholds required for performing the filtering
are obtained using the procedure described in the earlier section (‘st’ varies from 0.7
to 1.0 for a 14 cm diameter column; 0.8 to 1.2 for a 19 cm diameter column; 1.4 to
1.8 for a 44 cm diameter column) .

A few typical results are presented comparing the effects of filtering on the
various fluid dynamic parameters. Figure 3.23 shows the comparison of the time
averaged axial liquid velocity in a 14 cm diameter column, at two superficial gas
velocities. The results before and after filtering are nearly identical. This is expected,
as it is known that the spurious velocities get averaged out in the process of time
averaging, and therefore do not affect the mean velocities. On the other hand there
is a significant reduction in the magnitude of the turbulent normal stresses as seen
in Figures 3.24 and 3.25 for superficial gas velocities of 2.4 cm/s and 9.6 cm/s,
respectively, in a 14 cm diameter column. Figure 3.24 for the lower gas velocity

shows a lower level of noise, as discussed earlier.
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Figure 3.23: Comparison of the Time Averaged Liquid Velocities Before and After
Filtering in a 14 cm Column
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Figure 3.26 shows the effects of filtering on the turbulent shear stress in a 14

cm column at gas velocities of 2.4 cm/s and 9.6 cm/s. As opposed to the normal
stresses and turbulent kinetic energy, the effect of filtering cannot be judged based
on the reduction in the magnitude of the shear stress. The reason for this is because
the shear stress measurement involves the cross-correlation of the radial and axial
turbulent velocities. Unlike the results for the normal stresses, the presence of noise
in the data causes the shear stress calculated to oscillate between positive and negative
values (due to the cross-correlation) and does not specifically result in an increase in
the magnitude of the quantity. This is clearly illustrated in the positive and negative
values of the shear stress calculated from the unfiltered data, while for the filtered

data the results show expected trends.
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Figure 3.26: Comparison of the Turbulent Shear Stresses Before and After Filtering
in a 14 cm Column

Filtering of CARPT data using the wavelet-based algorithm thus helps in re-
ducing the level of noise in the data by 80 to 90 %, and therefore enables a better and
more accurate estimation of the fluid dynamic parameters in bubble columns. Re-

sults from CARPT experiments, subject to filtering, have been successfully compared
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with experimental data in the literature, and hence provide a means of validating the

CARPT measurements in bubble columns. Details of these comparisons are given in

Chapter 4, along with a discussion of all the experimental results.



