List of Tables

2.1	Correlations for Estimating the Transition Holdup and Transition Gas	
	Velocity based on the Bi-modal Bubble Size Distribution in Churn-	
	Turbulent Flow (SI units)	18
2.2	Correlations for Estimating the Large Bubble Holdup and Overall	
	Holdup based on the Bi-modal Bubble Size Distribution in Churn-	
	Turbulent Flow (SI units)	18
2.3	List of Correlations for the Global Gas Holdup as a Function of Gas	
	and Liquid Properties (in SI units unless otherwise mentioned)	20
2.4	Literature Correlations for Liquid Phase Axial Dispersion Coefficient	47
2.5	Experimental Conditions Used for Liquid Phase Axial Dispersion Co-	
	efficient Correlations of Table 2.4	48
3.1	Comparison of Errors in Estimating Particle Location	79
3.2	Errors in the Estimation of Stationary Particle Position Using the Two-	
	Step Iterative Algorithm, Under Various Operating Conditions	79
3.3	Assignment of Compartments to Each Column for CARPT Data Pro-	
	cessing	83
3.4	Details of Experimental Runs for Controlled Motion of Particle	102
3.5	Errors in Estimation of Particle Position (cm) and Velocity (cm/sec)	108
4.1	Operating Conditions and Experimental Details	116
4.2	Regime of Bubble Formation for Different Operating Conditions	121
4.3	Column Averaged Lagrangian Integral Time Scales measured Using	
	CARPT	228
6.1	Experimental Conditions (Temp: 250°C)	267
6.2	Positions of Tracer Injection in the Model	278

6.3	List of Estimated Average Fluid Dynamic Parameters for LaPorte	
	AFDU during Methanol Synthesis	286
6.4	Estimation of Global Gas Holdup in the Reactor Using Correlations	
	from the Literature	288
6.5	Estimated RCFD Model Parameters for the Methanol Synthesis AFDU	
	Reactor Operating at $U_g=25$ cm/s, $P=52$ atm, $T=250$ C (Run	
	14.6)	296
6.6	Sources of Experimental Data for D_{eff}	311
C.1	Model Parameters from Time-of-Flow Measurements Using HPA	344
D.1	Constants for Radiation Simulation	347
G.1	Predicted Conversion and Selectivity for Various Values of k_1 and k_2	373

List of Figures

1.1	Bubble Columns and Slurry Bubble Columns	3
2.1	Identification of Flow Regime from Behavior of Drift Flux with Respect to Global Gas Holdup: (a) Schematic Representation (b) Experimental	
	Data from Present Work in a 14 cm Diameter Column	12
2.2	Flow Regime Map for Air-Water Bubble Columns (Deckwer 1980) .	13
2.3	Model of Krishna et al. (1991) for Gas Holdup	17
2.4	Predictions of Literature Correlations for the Global Gas Holdup in a	
	19 cm Diameter Column, Air-Water System, Atmospheric Conditions	
	(points denote experimental data from present work)	21
2.5	Finite Two Dimensional Eulerian Control Volume	27
3.1	Schematic of the CARPT Facility	61
3.2	Configuration of Detectors in CARPT Experiments	62
3.3	Calibration Device	70
3.4	Figure for Calculation of the Solid Angle Between an Isotropic Source	
	and a Detector with a Circular Aperture, with the Source on the Axis	
	of the Detector	74
3.5	Simulations of Distance Vs Solid Angle for Various heights Correspond-	
	ing to Various Particle Positions	75
3.6	Distance Vs Intensity in a 14 cm column (Calibration data for detector	
	11)	76
3.7	Calibration Data of Distance versus Intensity in a 44 cm Diameter	
	Column (solid lines are representative data for a 14 cm diameter	
	column)	80
3.8	Column Discretization for CARPT Data Processing	82

3.9	Effect of Compartment Discretization on the Circumferentially Av-	
	eraged (a) Time Averaged Axial Liquid Velocity and (b) Turbulent	
	Kinetic Energy in a 14 cm Diameter Column, $U_g=2.4$ cm/s, $z=$	
	60 cm	86
3.10	Fluctuations in Stationary Particle Position (Taken from Calibration	
	Data in a 14 cm Column, $U_g = 9.6 \text{ cm/s}$)	89
3.11	Spurious Velocities Calculated from the Data in Figure 3.10, Mean =	
	0.05 cm/s, rms velocity = $26.4 cm/s$	90
3.12	Comparison of Classical Fourier Transform and Wavelet Analysis tech-	
	niques for filtering CARPT data	92
3.13	Hierarchy of Wavelet Packets in Wavelet Packet Decomposition	95
3.14	Comparison of Results Obtained from Filtering the Intensity Data ver-	
	sus Position Data	98
3.15	Experimental setup for controlled motion of particle	100
3.16	Results for RUN 5 : trajectory y of particle	103
3.17	Results for RUN 5 : Velocity v_x and error in estimation of velocity of	
	particle	104
3.18	Results for RUN 5 : Velocity v_y and error in estimation of velocity of	
	particle	105
3.19	Results for RUN 5 : Velocity v_z and error in estimation of velocity of	
	particle	106
3.20	Circular Trajectory of Particle for Run 3	107
3.21	Filtering of the Numerically Generated Noisy 'Chirp' Signal	109
3.22	Error in the Velocities Computed by Differentiation of the Chirp	110
3.23	Comparison of the Time Averaged Liquid Velocities Before and After	
	Filtering in a 14 cm Column	111
3.24	Comparison of the Turbulent Normal Stresses Before and After Filter-	
	ing, Col. Dia. 14 cm, $U_g = 2.4$ cm/s	112
3.25	Comparison of the Turbulent Normal Stresses Before and After Filter-	
	ing, Col. Dia. 14 cm, $U_g = 9.6$ cm/s	112
3.26	Comparison of the Turbulent Shear Stresses Before and After Filtering	
	in a 14 cm Column	113
4.1	Details of Distributors	117

4.2	Global gas Holdup as a Function of Superficial Gas Velocity in the	
	Different Columns Investigated	123
4.3	Velocity Vector Plots (Longitudinal Views) for Column Diameter 14	
	cm, Distributor: Perforated Plate 6A, $U_g=2.4~\mathrm{cm/s}$	126
4.4	Velocity Vector Plots (Cross-sectional Views) for Column Diameter 14	
	cm, Distributor: Perforated Plate (6A), $U_g=2.4$ cm/s	127
4.5	Velocity Vector Plots (Longitudinal Views) for Column Diameter 14	
	cm, Distributor: Perforated Plate 6A, $U_g = 4.8 \text{ cm/s} \dots \dots \dots$	130
4.6	Velocity Vector Plots (Cross-sectional Views) for Column Diameter 14	
	cm, Distributor: Perforated Plate (6A), $U_g = 4.8 \text{ cm/s} \dots \dots$	131
4.7	Velocity Vector Plots (Longitudinal Views) for Column Diameter 14	
	cm, Distributor: Perforated Plate 6A , $U_g = 9.6$ cm/s	133
4.8	Velocity Vector Plots (Cross-sectional Views) for Column Diameter 14	
	cm, Distributor: Perforated Plate (6A), $U_g = 9.6$ cm/s	134
4.9	Velocity Vector Plots (Longitudinal Views) for Column Diameter 14	
	cm, Distributor: Perforated Plate 6A , $U_g = 12.0$ cm/s	135
4.10	Velocity Vector Plots (Cross-sectional Views) for Column Diameter 14	
	cm, Distributor: Perforated Plate (6A), $U_g = 12.0 \text{ cm/s} \dots \dots$	136
4.11	Velocity Vector Plots (Longitudinal Views) for Column Diameter 14	
	cm, Distributor: Perforated Plate 6B , $U_g = 2.4$ cm/s	137
4.12	Velocity Vector Plots (Cross-sectional Views) for Column Diameter 14	
	cm, Distributor: Perforated Plate (6B), $U_g = 2.4 \text{ cm/s} \dots \dots$	138
4.13	Velocity Vector Plots (Longitudinal Views) for Column Diameter 14	
	cm, Distributor: Perforated Plate 6B , $U_g = 4.8 \text{ cm/s} \dots \dots$	139
4.14	Velocity Vector Plots (Cross-sectional Views) for Column Diameter 14	
	cm, Distributor: Perforated Plate (6B), $U_g = 4.8 \text{ cm/s} \dots \dots$	140
4.15	Velocity Vector Plots (Longitudinal Views) for Column Diameter 14	
	cm, Distributor: Perforated Plate 6B , $U_g = 9.6$ cm/s	141
4.16	Velocity Vector Plots (Cross-sectional Views) for Column Diameter 14	
	cm, Distributor: Perforated Plate (6B), $U_g = 9.6 \text{ cm/s} \dots \dots$	142
4.17	Velocity Vector Plots (Longitudinal Views) for Column Diameter 14	
	cm, Distributor: Perforated Plate 6B, $U_g=12.0~{\rm cm/s}$	143
4.18	8 Velocity Vector Plots (Cross-sectional Views) for Column Diameter 14	
	cm, Distributor: Perforated Plate (6B), $U_g = 12.0 \text{ cm/s} \dots$	144

4.19	Velocity Vector Plots (Longitudinal Views) for Column Diameter 19	
	cm, Distributor: Perforated Plate 8A, $U_g=2.0~{\rm cm/s}$	146
4.20	Velocity Vector Plots (Cross-sectional Views) for Column Diameter 19	
	cm, Distributor: Perforated Plate (8A), $U_g=2.0~{\rm cm/s}$	147
4.21	Velocity Vector Plots (Longitudinal Views) for Column Diameter 19	
	cm, Distributor: Perforated Plate 8A, $U_g = 5.0 \text{ cm/s} \dots \dots$	148
4.22	Velocity Vector Plots (Cross-sectional Views) for Column Diameter 19	
	cm, Distributor: Perforated Plate (8A), $U_g = 5.0 \text{ cm/s} \dots \dots$	149
4.23	Velocity Vector Plots (Longitudinal Views) for Column Diameter 19	
	cm, Distributor: Perforated Plate 8A, $U_g = 12.0 \text{ cm/s} \dots \dots$	150
4.24	Velocity Vector Plots (Cross-sectional Views) for Column Diameter 19	
	cm, Distributor: Perforated Plate (8A), $U_g=12.0~{\rm cm/s}$	151
4.25	Velocity Vector Plots (Longitudinal Views) for Column Diameter 19	
	cm, Distributor: Bubble Cap 8B, $U_g=12.0~{\rm cm/s}$	153
4.26	Velocity Vector Plots (Cross-sectional Views) for Column Diameter 19	
	cm, Distributor: Bubble Cap (8B), $U_g=12.0~{\rm cm/s}$	154
4.27	Velocity Vector Plots (Longitudinal Views) for Column Diameter 19	
	cm, Distributor: Inverted Cone 8C, $U_g=12.0~{\rm cm/s}$	155
4.28	Velocity Vector Plots (Cross-sectional Views) for Column Diameter 19	
	cm, Distributor: Inverted Cone (8C), $U_g=12.0~{\rm cm/s}$	156
4.29	Velocity Vector Plots (Longitudinal Views) for Col. Dia. 44 cm, Dis-	
	tributor: Perforated Plate 18A, $U_g = 2.0 \text{ cm/s} \dots \dots \dots$	157
4.30	Velocity Vector Plots (Cross-sectional Views) for Column Diameter 44	
	cm, Distributor: Perforated Plate (18A), $U_g = 2.0 \text{ cm/s} \dots$	158
4.31	Velocity Vector Plots (Longitudinal Views) for Col. Dia. 44 cm, Dis-	
	tributor: Perforated Plate 18A, $U_g = 5.0 \text{ cm/s} \dots \dots \dots$	159
4.32	Velocity Vector Plots (Cross-sectional Views) for Column Diameter 44	
	cm, Distributor: Perforated Plate (18A), $U_g = 5.0 \text{ cm/s} \dots$	160
4.33	Velocity Vector Plots (Longitudinal Views) for Col. Dia. 44 cm. Dis-	•
	tributor: Perforated Plate 18A , $U_g = 10.0 \text{ cm/s} \dots \dots \dots$	161
4.34	Velocity Vector Plots (Cross-sectional Views) for Column Diameter 44	
	cm, Distributor: Perforated Plate (18A), $U_g = 10.0 \text{ cm/s} \dots$	162
4.35	6 Histograms or Probability Density Functions (pdf) for the Instanta-	
	neous Velocities in a 14 cm Column, $U_g=2.4~\mathrm{cm/s},z=90.0~\mathrm{cm},\theta=$	
	0 ⁰ , (a) Radial, (b) Azimuthal, (c) Axial	165

4.36	Histograms or Probability Density Functions (pdf) for the Instanta-	
	neous Velocities in a 14 cm Column, $U_g=12.0$ cm/s, $z=70.0$ cm, θ	
	= 90° , (a) Radial, (b) Azimuthal, (c) Axial	166
4.37	Radial Turbulent Normal Stress (Longitudinal Views) for Column Di-	
. "	ameter 14 cm, Distributor: Perforated Plate 6A, $U_g=12.0~\mathrm{cm/s}$	171
4.38	Azimuthal Turbulent Normal Stress (Longitudinal Views) for Column	
	Diameter 14 cm, Distributor: Perforated Plate 6A, $U_g=12.0~{\rm cm/s}$.	172
4.39	Axial Turbulent Normal Stress (Longitudinal Views) for Column Di-	
	ameter 14 cm, Distributor: Perforated Plate 6A, $U_g=12.0~{\rm cm/s}$	173
4.40	Reynolds Shear Stress, τ_{rz} , (Longitudinal Views) for Column Diameter	
	14 cm, Distributor: Perforated Plate 6A, $U_g=12.0~{\rm cm/s}$	175
4.41	Reynolds Shear Stress, $\tau_{\theta r}$,(Longitudinal Views) for Column Diameter	
	14 cm, Distributor: Perforated Plate 6A, $U_g=12.0~{\rm cm/s}$	176
4.42	Reynolds Shear Stress, $\tau_{\theta z}$,(Longitudinal Views) for Column Diameter	
	14 cm, Distributor: Perforated Plate 6A , $U_g = 12.0 \text{ cm/s} \dots \dots$	177
4.43	Turbulent Kinetic Energy, (Longitudinal Views) for Column Diameter	
	14 cm, Distributor: Perforated Plate 6A , $U_g=12.0~{\rm cm/s}$	178
4.44	Axial Turbulent Normal Stress (Longitudinal Views) for Column Di-	
	ameter 19 cm, Distributor: Perforated Plate 8A, $U_g=2.0~{\rm cm/s}$	179
4.45	Reynolds Shear Stress, τ_{rz} , (Longitudinal Views) for Column Diameter	
	19 cm, Distributor: Perforated Plate 8A, $U_g=2.0~{\rm cm/s}$	180
4.46	Components of the Turbulent Stress tensor, τ , in a 14 cm Diameter	
	Column, Distributor: $6A$, $U_g = 2.4$ cm/s	183
4.47	Components of the Turbulent Stress tensor, τ , in a 14 cm Diameter	
	Column, Distributor: $6A$, $U_g = 4.8 \text{ cm/s} \dots \dots \dots$	183
4.48	Components of the Turbulent Stress tensor, τ , in a 14 cm Diameter	
	Column, Distributor: $6A$, $U_g = 9.6$ cm/s	184
4.49	Components of the Turbulent Stress tensor, τ , in a 14 cm Diameter	
	Column, Distributor: $6A$, $U_g = 12.0 \text{ cm/s} \dots \dots \dots$	184
4.50	Components of the Turbulent Stress tensor, τ , in a 14 cm Diameter	
	Column, Distributor: 6B , $U_g = 2.4 \text{ cm/s} \dots \dots \dots \dots$	185
4.51	Components of the Turbulent Stress tensor, τ , in a 44 cm Diameter	
	Column, $U_g = 2.0 \text{ cm/s}$	185
4.52	Components of the Turbulent Stress tensor, τ , in a 44 cm Diameter	
	Column, $U_q = 5.0 \text{ cm/s} \cdot \dots \cdot $	186

4.53	Components of the Turbulent Stress tensor, τ , in a 44 cm Diameter	
	Column, $U_g = 10.0 \text{ cm/s} \dots \dots \dots \dots \dots \dots \dots$	186
4.54	Effect of Superficial Gas Velocity on the Time Averaged One Dimen-	
	sional Axial Liquid Velocity Profiles (a) Col. Dia. $= 14 \text{ cm } (6A)$ (b)	
	Col. Dia. = 19 cm (8A) (c) Col. Dia. = 44 cm \dots	192
4.55	Time Averaged Axial Liquid Velocities in a 44 cm Column, $U_g=2.0$	
	cm/s (a) Along Slice 0 - 180 (b) z/L = 0.6 \hdots	194
4.56	Time Averaged Axial Liquid Velocities in a 44 cm Column, $U_g=5.0$	
	cm/s (a) Along Slice 0 - 180 (b) z/L = 0.6 \hdots	195
4.57	Time Averaged Axial Liquid Velocities in a 44 cm Column, $U_g=10.0$	
	cm/s (a) Along Slice 0 - 180 (b) z/L = 0.6 \hdots	196
4.58	Effect of Superficial Gas Velocity on the One Dimensional Turbulent	
	Kinetic Energy Profiles (a) Col. Dia. $= 14 \text{ cm } (6A)$ (b) Col. Dia. $=$	
	19 cm (8 A) (c) Col. Dia. = 44 cm	197
4.59	Effect of Superficial Gas Velocity on the One Dimensional Reynolds	
	Shear Stress Profiles (a) Col. Dia. $= 14 \text{ cm } (6A)$ (b) Col. Dia. $= 19$	
	cm (8A) (c) Col. Dia. = 44 cm \dots	199
4.60	Time Averaged Liquid Velocity as a function of Axial Position in a	
	Column of Diameter 14 cm, Distributor: $6A$, $U_g = 2.4$ cm/s	201
4.61	Time Averaged Liquid Velocity as a function of Axial Position in a	
	Column of Diameter 14 cm, Distributor: 6B, $U_g=2.4~{\rm cm/s}$	201
4.62	Effect of Distributor on the Time Averaged Liquid Velocity in a Col-	
	umn of Diameter 19 cm, $U_g = 12.0$ cm/s	204
4.63	Effect of Distributor on the Turbulent Kinetic Energy in a Column of	
	Diameter 19 cm, $U_g = 12.0 \text{ cm/s}$	204
4.64	Effect of Distributor on the Reynolds Shear Stress in a Column of	
	Diameter 19 cm, $U_g = 12.0 \text{ cm/s}$	205
4.65	Repeatability of CARPT Experiments, D_c 14 cm, $U_g = 12.0$ cm/s,	
	6A (a) Axial Liquid Velocity (b) Turbulent Shear Stress (c) turbulent	
	Kinetic Energy	207
4.66	Comparison of CARPT and HPA results for the Time Averaged Axial	
	Liquid Velocity, Col. Dia. : 19 cm, Distributor: 8A	210
4.67	Comparison of the Turbulent Reynolds Shear Stress between CARPT	
	and HFA Data of Menzel et al. (1990)	212

4.68	Comparison of CARPT (D_c : 14 cm; U_g : 2.4 cm/s) and LDA (D_c : 15	
	cm; U_g : 2.7 cm/s) Data for the Turbulent Axial Normal Stress	213
4.69	Comparison of CARPT (D_c : 14 cm; U_g : 4.8 cm/s) and LDA (D_c : 15	
	cm; U_g : 4.5 cm/s) Data for the Turbulent Stresses	214
4.70	Flow Representation in Bubble Columns and Influence of Velocity Gra-	
	dient on Fluctuating Velocity	220
4.71	Radial Lagrangian Auto-correlation Coefficient at Various Radial Lo-	
	cations in the Middle Section of the Column, D_c : 14 cm, Distr.: 6A ,	
	$U_g = 12 \text{ cm/s} \dots \dots \dots \dots \dots \dots \dots$	223
4.72	Azimuthal Lagrangian Auto-correlation Coefficient at Various Radial	
	Locations in Middle Section of the Column, D_c : 14 cm, Distr.: $6A$, U_g	
	$= 12 \ \mathrm{cm/s} \ \ldots \ldots \ldots \ldots \ldots \ldots$	223
4.73	Axial Lagrangian Auto-correlation Coefficient at Various Radial Loca-	
	tions in the Middle Section of the Column, D_c : 14 cm, Distr.: $\mathbf{6A}$, U_g	
	= 12 cm/s	224
4.74	Radial-Axial Lagrangian Cross-correlation Coefficient at Various Ra-	
	dial Locations in Middle Section of the Column, D_c : 14 cm, Distr.:	
	$6A, U_g = 12 \text{ cm/s} \dots \dots \dots \dots \dots \dots$	224
4.75	Radial Turbulent Diffusivity as a Function of Time at Various Radial	
	Locations in Middle Section of the Column, D_c : 14 cm, Distr.: 6A , U_g	
	$= 12 \text{ cm/s} \dots \dots$	230
4.76	Axial Turbulent Diffusivity as a Function of Time at Various Radial	
	Locations in Middle Section of the Column, D_c : 14 cm, Distr.: 6A , U_g	
	$= 12 \text{ cm/s} \dots \dots$	230
4.77	Azimuthal Turbulent Diffusivity as a Function of Time at Various Ra-	
	dial Locations in Middle Section of the Column, D_c : 14 cm, Distr.:	
	$6A, U_g = 12 \text{ cm/s} \dots \dots$	231
4.78	Radial Turbulent Eddy Diffusivity as a Function of Radial Position,	
	D_c : 14 cm, Distr.: 6A , $U_g = 12$ cm/s	232
4.79	Axial Turbulent Eddy Diffusivity as a Function of Radial Position, D_c :	
	14 cm, Distr.: $6A$, $U_g = 12$ cm/s	233
4.80	Azimuthal Turbulent Eddy Diffusivity as a Function of Radial Position,	
	D_c : 14 cm, Distr.: 6A , $U_a = 12$ cm/s	233

4.81	Effect of Superficial Gas Velocity on the One Dimensional Radial Eddy Diffusivities (a) Col. Dia. = 14 cm (6A) (b) Col. Dia. = 19 cm (8A)	
4.82	(c) Col. Dia. = 44 cm	236
	(c) Col. Dia. = 44 cm $\cdot \cdot \cdot$	237
5.1	Average Gas Holdup as a Function of Column Diameter and Superficial	
	Gas Velocity (Solid Lines Represent Equation 5.2)	244
5.2	Effect of Superficial Gas Velocity and Column Diameter on Mean Liq-	0.45
۳ ،	uid Recirculating Velocity	247
5.3	Determination of the Liquid Recirculating Velocity Profile, $u_z(r)$, With	248
5.4	Knowledge of $\epsilon_l(\xi)$ and \overline{u}_{rec}	240
0.4	Axial Eddy Diffusivity	250
5.5	Effect of Superficial Gas Velocity and Column Diameter on the Average	
	Radial Eddy Diffusivity	250
5.6	Radial Profile (P_4) for the Axial Eddy Diffusivity	251
5.7	Radial Profile (P_2) for the Radial Eddy Diffusivity	251
5.8	Method of Characterization of Churn-Turbulent Bubble Columns	253
6.1	Variable Locations in a Staggered Grid	260
6.2	Schematic of Column Discretization	262
6.3	Time Averaged One Dimensional Axial Liquid Velocity Profile: Col-	
	umn Diameter 19 cm, $U_g = 10$ cm/s	264
6.4	Time Averaged Liquid Holdup Profile: Column Diameter 19 cm, $U_g =$	
	10 cm/s	264
6.5	One Dimensional Turbulent Eddy Diffusivities: Column Diameter 19	
0.0	cm, $U_g = 10 \text{ cm/s} \dots$	265
6.6	Comparison of Experimental Tracer Response with 2D Model Predic-	
	tion (dashed line is for cell heights, in end zones, equal to two column diameters)	266
6.7	Experimentally Measured Axial Gas Holdup Profiles in AFDU During	200
0.1	Methanol Synthesis: (a) DP (b) NDG	268
6.8	Schematic of DP and NDG Technique for the Measurement of the	_00
	Average Gas Holdup	270

6.9	Radial Gas holdup Profiles Calculated from Global Gas holdup Mea-	
	surements (DP and NDG) in the AFDU During Methanol Synthesis .	271
6.10	Schematic of Reactor for Tracer Experiments	272
6.11	Calculated Axial Liquid Velocity Profile for Run 14.6, in the AFDU	
	Reactor During Methanol Synthesis	274
6.12	Calculated Axial Eddy Diffusivity Profile for Run 14.6, in the AFDU	
	Reactor During Methanol Synthesis	275
6.13	Calculated Axial Eddy Diffusivity Profile for Run 14.6, in the AFDU	
	Reactor During Methanol Synthesis	275
6.14	Schematic of the Cross-sectional View of the AFDU Reactor showing	
	Placement of Heat Exchanger Tubes	276
6.15	Experimental Detector Responses for Wall Injection at Level N1 for	
	Run 14.6	279
6.16	Comparison of Model Prediction with Experimental Detector Responses	
	for Wall Injection at Level N1, Run 14.6	281
6.17	Comparison of Model Prediction with Experimental Detector Responses	
	for Wall Injection at Level N1, Run 14.6	282
6.18	Comparison of Model Prediction with Experimental Detector Responses	
	for Center Injection at Level N2, Run 14.6	283
6.19	Comparison of Model Prediction with Experimental Detector Responses	
	for Center Injection at Level N2, Run 14.6	284
6.20	${\bf Comparison\ of\ Model\ Prediction\ with\ Experimental\ Detector\ Responses}$	
	for Center Injection at Level N1, Run 14.6	285
6.21	Finite Volume Discretization of the Flow Domain in the Radial	
	Direction	290
6.22	Schematic of Recirculation with Cross Flow and Dispersion Model	
	(RCFDM)	293
6.23	Comparison of Experimental Tracer Response with RCFDM Pre-	
	diction	295
6.24	Comparison of RCFD Model Prediction with Experimental Detector	
	Responses for Wall Injection at Level N1, Run 14.6	297
6.25	Comparison of RCFD Model Prediction with Experimental Detector	
	Responses for Wall Injection at Level N1, Run 14.6	298
6.26	Steady Backmixing Experiment	300

6.27	Simulation Results of the Steady State Two Dimensional Convection	
	Diffusion Model	302
6.28	Effect of Superficial Gas Velocity on (a) Average Axial Eddy Diffusiv-	
	ity, \overline{D}_{zz} , (b) Average Radial Eddy Diffusivity, \overline{D}_{rr}	305
6.29	Effect of Superficial Gas Velocity on Taylor Component, D_{Taylor}	306
6.30	Effect of Superficial Gas Velocity on the Axial Dispersion Coefficient	
	and its Contributions, \overline{D}_{zz} and D_{Taylor} , (from CARPT Data) (a) D_c	
	= 14 cm (6A), (b) D_c = 44 cm	307
6.31	Comparison of the Axial Dispersion Coefficients Obtained from CARPT $$	
	with Experimental Data from the Literature Under Similar Operating	
	Conditions	308
6.32	Effect of Superficial Gas Velocity on the Axial Dispersion Coefficient	
	and its Contributions in a Column of Diameter 19 cm, Air-Water,	
	Atmospheric System	310
6.33	Effect of Superficial Gas Velocity on the Axial Dispersion Coefficient	
	and its Contributions in a Column of Diameter 44 cm, Air-Water,	
	Atmospheric System	310
6.34	Parity Plot Comparing Effective Axial Dispersion Coefficient, D_{eff} ,	
	Predicted Using Present Model and Analysis Against Experimental	
	Data From Literature Under Various Conditions	312
6.35	Parity Plot Comparing Effective Axial Dispersion Coefficient, D_{eff} ,	
	Predicted Using Correlation of Baird and Rice (1975) with Experi-	015
0.00	mental Data From Literature Under Various Conditions	315
6.36	Parity Plot Comparing Effective Axial Dispersion Coefficient, D_{eff} ,	
	Predicted Using Correlation of Berg and Schluter (1995) with Experi-	216
	mental Data From Literature Under Various Conditions	316
A.1	One Dimensional Axial Liquid Velocity Profile, $D_c=14~\mathrm{cm},U_g=9.6$	
	cm/s	332
A.2	Reynolds Shear Stress Profile, $D_c=14$ cm, $U_g=9.6$ cm/s	332
A.3	Mixing Length Profile, $D_c=14$ cm, $U_g=9.6$ cm/s	333
C.1	Schematic of HPA	343
C.2	Comparison of CARPT and HPA results for the Time Averaged Axial	O TE
U.2	Liquid Velocity, Col. Dia.: 19 cm, Distributor: 8A	344

	(a) Three dimensional view of the (x,y) spatial distribution of intensity in a cross sectional slice of the reactor. Each '.' denotes a discrete source point at an (x,y) location. Position of detector is shown in	
	Figure D.2. Contribution of the shaded region in Figure D.2 is 90 %. (b) Front view (along x-axis)	348 349
E.1 E.2	Effects of the type of Background Subtract on Radiation Measurements Top View of Detectors Positioned for Measurement to Calculate De-	353
E.3	tector Efficiencies	354 354
F.1 F.2	Individual Detector Responses at (a) Level 1 (b) Level 5 Comparison of Model Prediction with Experimental Detector Responses	355
F.3	for Wall Injection at Level N1, Run 14.7	356
F.4	for Wall Injection at Level N1, Run 14.7	357
F.5	for Wall Injection at Level N2, Run 14.7	358
F.6	for Wall Injection at Level N2, Run 14.7	359
F.7	for Center Injection at Level N1, Run 14.7	360
F.8	for Center Injection at Level N1, Run 14.7	361
F.9	for Center Injection at Level N2, Run 14.7	362
F.10	for Center Injection at Level N2, Run 14.7	363
F.11	for Wall Injection at Level N1, Run 14.8	364
	for Wall Injection at Level N1. Run 14.8	365

F'.12	Comparison of Model Prediction with Experimental Detector Responses	
	for Wall Injection at Level N2, Run 14.8	366
F.13	Comparison of Model Prediction with Experimental Detector Responses	
	for Wall Injection at Level N2, Run 14.8	367
F.14	Comparison of Model Prediction with Experimental Detector Responses	•
	for Center Injection at Level N1, Run 14.8	368
F.15	Comparison of Model Prediction with Experimental Detector Responses	
	for Center Injection at Level N1, Run 14.8	369
F.16	Comparison of Model Prediction with Experimental Detector Responses	
	for Center Injection at Level N2, Run 14.8	370
F.17	Comparison of Model Prediction with Experimental Detector Responses	
	for Center Injection at Level N2, Run 14.8	371