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Figure 5-17. Calibration Map for Detector #1

This vector of counts acquired at each sampling instant is then fed into the calibration curve for that detector to find out the corresponding distance of the tracer from that detector given below by equation (5.5).
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Knowing the distance of the tracer from each detector, the tracer co-ordinates can be computed (Degaleesan, 1997). The dynamic bias issue arises due to the fact that when the tracer particle is in motion the count registered by the ith detector at a certain location 
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 in the reactor will strongly depend on the past particle trajectory, the fluid velocity along the particle path and the rate at which the photon counts are registered by that detector. Hence, the mean count registered by the ith detector when particle is kept stationary 
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. Hence, when the particle is in motion the distance between tracer and detector estimated from the static calibration measurements (5.5) will be different from the real distance of the tracer from detector. This concept is illustrated below in Figure 5-18.
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Figure 5-18. Cartoon Illustrating the Concept of ‘Dynamic Bias’
From Figure 5-18 it can be seen that, as the fluid velocity increases for a fixed sampling rate, or as the sampling rate decreases for a fixed fluid velocity, the greater will be the deviation of the dynamic measurement from the static measurement. In this work we have quantified the error introduced in the reconstructed particle position and the particle velocity for different sampling rates and fluid velocities experimentally using the following approach.

5.2.3 Experimental Details
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To quantify the error due to the dynamic bias effect the errors introduced due to the flow following capability of the tracer must be decoupled from the CARPT measurements. Further, the tracer must follow a known trajectory with a known velocity to be able to compare the experimental results and quantify the error. Hence, the radioactive tracer was placed at the tip of a 6- bladed Rushton turbine in the stirred tank (details of the tank dimensions are provided below in Figure 5-19). The impeller speed was varied from 60 – 800 rpm corresponding to tangential velocities of 21 cm/s to 2.79 m/s. At each impeller speed photon count data was registered by each of 16 detectors surrounding the stirred tank (details of detector configuration provided in Rammohan et. al., 2001a). Data was acquired at the rate of 200 Hz. The dynamic measurements were preceded by static calibration experiments that resulted in calibration curves like the one shown in Figure 5-17. 

Figure 5-19. Dimensions of Stirred Tank Reactor

The impeller speeds were monitored with a high precision magnetic tachometer and the variations in the speed were within 1%. The raw count data generated from these experiments were then reprocessed to generate raw count data corresponding to experiments where the data acquisition rates are 25, 50 and 100 Hz acquired over a time 

period of five minutes. These raw data corresponding to the different sampling frequencies were then fed into the CARPT reconstruction algorithm (Chaouki et. al., 1997) to estimate the particle trajectories at different sampling rates and different impeller speeds. In the following section the details of the numerical technique used to quantify the dynamic bias is outlined.

5.2.4.Details of Numerical Technique

A Monte Carlo based phenomenological model developed earlier (Larachi et. al., 1994) has been further extended to simulate the dynamic bias CARPT experiments. Theoretically, the number of photopeak counts C recorded by a detector during a sampling interval T from a point radioactive source of strength R placed at a location (x,y,z) inside a dense medium, the tank to be studied, can be expressed by the following relationship (Tsoulafanidis, 1983; and Moens et. al., 1981):
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where 
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where 
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 is the number of 
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 rays emitted per disintegration (for example 
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 is the total efficiency, i.e. the probability that 
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 rays will emerge from the reactor without scattering and will interact with the detector; 
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 is the dead time per recorded pulse, and 
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 is the photopeak energy to total energy (or photopeak) ratio. ‘r’ is the distance between the source and a point P on the outer surface of the detector crystal, eR the path length traveled by the 
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 - ray in the reactor, eshaft is the length of the ray traveling through the shaft (Figure 5-20.), eW is the path length through the reactor wall and d is the crystal thickness in the direction given by the vector 
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 is the solid angle subtended by the detector surface at the source and 
[image: image18.wmf]n

 is an external unit vector locally 

perpendicular to d. 
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 are the total linear attenuation coefficients of the reactor inventory, stainless steel shaft (onto which impeller is mounted), the reactor wall and the detector material, respectively. Each of the above attenuation coefficients depend on the 
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Figure 5-20. Modeling Internals using Monte Carlo Simulation 
It is in the computation of the intrinsic efficiency 
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 that the Monte Carlo procedure is used. Out of N photons emitted by the tracer only a certain fraction of the photons will intersect the detector crystal. The direction of each photon is picked at random, using a rectangular random number generator (corresponding to a Monte Carlo random sample), and depending on the direction cosines of the photons it can be checked if a particular photon will intersect the detector or not. This fraction of the total photons that do intersect the detector surface, by definition is the solid angle subtended by the detector at the location of the tracer. The advantage of using a Monte Carlo integration is that the error decreases with the increase in number of photon histories tracked as 
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. It has been found previously (Larachi et. al., 1994) that tracking 1000 photon histories 

provides a reasonably accurate estimate of the intrinsic detection efficiency 
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. The first step in the Monte Carlo simulation is to estimate the parameters of the model equation (5.6), i.e. R, 
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, using the calibration data or the static measurements discussed earlier (section 5.2.4). Then the next step is to verify that the model can then be used to simulate the counts registered by the detectors corresponding to each known calibration point. A sample parity plot of the simulated versus measured calibration counts for detector #1 (Figure 5-21) suggests reasonably good predictions by the model.
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Figure 5-21. Parity Plot of Predicted vs Measured Calibration Counts Registered by Detector #1

The next step in using the model is to feed the known circular particle trajectory (corresponding to a certain impeller speed) 
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 to equation (5.6) to generate a dynamic estimate of the count registered by the ith detector i.e. 
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This equation is handled numerically as:
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The value of the integral does not change for values of 
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. Thus, equations (5.8) and (5.9) are used to numerically generate a raw count file corresponding to the dynamic CARPT measurements. These are then fed into a Monte Carlo based particle rendition algorithm (Chaouki et. al., 1997) to estimate the particle trajectory and particle velocity for different sampling rates and impeller speeds. In the following sections the experimental results are discussed in detail and some preliminary results from the simulations are outlined.

5.2.5 Results and Discussions
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5.2.5.1 Variation of Radial Bias with Data Acquisition Rate

Figure 5-22. Variation of Radial Bias with Data Sampling Rate (Vtip=0.21 - 2.79 m/s)

In Figure 5-22 the variation of the radial bias 
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 with the data sampling rate at different impeller speeds is shown. It can be seen that for all impeller speeds and sampling frequencies the bias is always negative, i.e. the reconstructed radial particle position is always underestimated. Further, for a given impeller speed it can be seen that the radial bias is at the minimum within a certain optimal data sampling rate window. The window shifts to the right with increasing velocities, i.e. at lower impeller speeds (26 –52 cm/s) the bias seems to be the smallest between 25 –50 Hz while for higher velocities (1.05 – 2.79 m/s) the minimum in the bias seems to be found between 75 – 125 Hz. For all speeds the bias becomes independent of the sampling rate beyond 200 Hz. However, as the data acquisition rate increases, the number of photon counts registered by a detector decreases and therefore the resolving capability of the detector deteriorates. Hence, there seems to be an inherent upper limit on the data sampling rates fixed by the resolving capability of the detectors. Given that, the lower limit on the sampling frequency seen from Figure 5-22 would seem to correspond to the desired minimum frequency below which the dynamic bias effects become important. That one should anticipate such limits is shown later theoretically. 

5.2.5.2 Determination of Optimal Data Acquisition Rate 

Based on the reconstructed particle trajectories the azimuthal velocity of the particle has been computed using the existing CARPT algorithms (Degaleesan, 1997). The variation of the nondimensional azimuthal velocity (V/Vtip) with sampling frequencies, for different impeller tip speeds, is shown below in Figure 5-23 and is similar in nature to Figure 5-22. Ideally, the estimated nondimensional velocities must be equal to 1. The figure suggests that at all data acquisition rates and for all impeller speeds the velocity is underestimated. The bias in the velocity is found to be minimum in a certain optimal sampling window. The bias at lower sampling rates is found to become higher with the increase in impeller speeds. Beyond a certain sampling rate (200 Hz) the bias seems to be independent of the sampling rate.
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Figure 5-23. Variation of Estimated V/Vtip vs Data Sampling Rate (Vtip =1.05 – 2.79 m/s)

The estimates of the bias shown above incorporate the contribution from the statistical fluctuations due to the nature of the photon emission process. The different contributions to the bias observed can be thought of as shown below in Figure 5-24. In the current experiment the medium was quiescent and hence the final data are corrupted only by the static bias and the dynamic bias. Subtracting the static bias contribution from the velocity estimates suggests that the dynamic bias is of the order of 14 –30 % (with increasing velocities). This would seem to be a considerable loss of information due to the dynamic bias effects.
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Figure 5-24. Errors in CARPT due to Nature of Experimental Technique

5.2.5.3 Limits on Data Sampling Rates

The optimum sampling frequency to capture a certain velocity is seen to be bounded between a fmin and a fmax. The fmin is the smallest frequency with which one needs to sample the data to ensure that the dynamic count at a certain location is as close as possible to the static count registered at that point. This criterion will ensure that the fluid velocities will be captured reasonably accurately. This minimum frequency is therefore determined by the following relationship:
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The fmax is the maximum frequency with which one can sample the data beyond which the statistical nature of the emission process makes it meaningless to acquire photons. An estimate of this maximum frequency can be obtained as follows:
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Now the LHS will be maximum when 
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where Rsource is the source strength in disintegrations per second, 
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Therefore we estimate the maximum sampling frequency as:
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Now, Vx is the maximum velocity we wish to be able to capture, Rsource is known and S is a complex function of the detector arrangement (D), relative location of the tracer in the column with respect to the detector arrangement and several other factors (Roy, 2000). An estimate of S is obtainable from Roy (2000) where the distributions of S for different detector configurations and locations of tracers are given. The maximum mean sensitivities seem to be of the order of 3.39 %/mm. The fact that S and Vx are functions of position i..e. 
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 suggests that the appropriate sampling frequency fs would also be a function of (x,y,z). But estimates of the maximum allowable sampling frequency can be made by using the sensitivity calculated at the point where the maximum velocities are expected for a particular detector and tracer arrangement. For the stirred tank set-up this maximum velocity is expected at the impeller tip which is near the column center. These calculations predict a maximum sampling frequency of 600 Hz whose order of magnitude is comparable to the maximum sampling rate observed experimentally. 

At lower frequencies error due to the statistical nature of the photon emission process would be lower than at higher frequencies. Hence, the lower estimate obtained experimentally can be thought of as a reasonable estimate of the desired frequency for data acquisition. The above analysis allows us to anticipate that there would be a n upper limit on the sampling frequency as we see from the experimental results reported in Sections 5.2.5.1 and 5.2.5.2 where beyond 120 Hz the velocities start deviating from the plateau..

5.2.5.4 Simulated Effect of Sampling Rate

Based on the details of the numerical scheme outlined in Section 5.2.4 some preliminary simulations are reported below in Figure 5-25. A circular trajectory similar to the experimental trajectory was fed into the Monte Carlo simulations. The particle was assumed to be moving at 1.0 m/s along this circular trajectory. A raw count file was generated from the Monte Carlo simulation corresponding to different sampling rates. A plot of this counts vs distance of tracer from detector #1 is shown below in Figure 5-25. It is seen that as the data sampling rate is increased more and more points are picked up by the detector. With the increase in the data sampling rate the calibration map looks closer and closer to the one with a single curve similar to the static calibration map (Figure 5-17). These results are encouraging given that the simulations shown below were performed without accounting for the statistical fluctuations of the photon emission process. 
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Figure 5-25. Simulated Dynamic Distance vs Count Map for Detector #1
5.2.6 Conclusions

The dynamic bias effect has been quantified experimentally. The experimental results suggest that •an optimal sampling frequency window exists. Further the appropriate sampling frequency would seem to differ from region to region in the reactor depending on local flow conditions. This would suggest that CARPT data should be acquired at the highest experimentally possible sampling frequency. Then the data must be reprocessed at different optimal frequencies in different zones based on a physical understanding of the flow being investigated. The preliminary results obtained from the numerical simulations are very encouraging. This will enable us to develop the ability to estimate foptimal “a priori” for any reactor configuration to capture Vdesired accurately. This will be of considerable use when the CARPT technique has to be implemented in large industrial reactors where performing such experimental studies is both cumbersome as well as time consuming. In the following section the errors in estimating the Eulerian information from the reconstructed trajectories and errors due to tracer not following the flow faithfully (refer section 5.1) are discussed in detail.
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