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Nomenclature

	Ac
	Cross sectional area of the reactor

	ap
	Specific surface area of the catalyst particle

	C
	Concentration of the reactant 

	Co
	Inlet / reference concentration of the reactant

	Cpg
	Specific heat capacity of the gas mixture

	Cps, Cpcat
	Specific heat capacity of the solid packing

	Da
	Damkohler Number

	Daxi,m
	Effective mass dispersion coefficient

	Di,m
	Effective diffusivity of species i in a mixture

	dp
	Diameter of catalyst particle

	dt
	Reactor / tube diameter

	E
	Activation Energy

	h
	Heat transfer coefficient

	k
	Rate constant of the reaction

	Kmix
	Thermal conductivity of the mixture

	Kwall
	Thermal conductivity of the wall

	kg
	Mass transfer coefficient

	L
	Reactor length
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	MT
	Total mass flux of reactants

	Mwt,i
	Molecular weight of species i

	nifo
	Flux of species i in the gas solid film

	nrxg
	Number of gas phase reactions

	nrxs
	Number of solid phase reactions

	Nu
	Nusselt number

	p
	Partial pressure of species in gas phase

	P
	Total pressure of the system

	PeM
	Mass Peclet number based on the particle diameter

	Pemg
	Mass Peclet number

	PeMr
	Radial mass Peclet number

	PeT
	Thermal Peclet number based on the particle diameter (gas phase)

	PeTc
	Solid  phase thermal Peclet Number

	PeTg
	Gas phase thermal Peclet Number

	PeTr
	Radial thermal Peclet number (gas phase)

	r
	Radial position within the reactor

	rj
	Rate of reactions (Chapter 7)

	Rg
	Universal gas constant

	Ri
	Net rate of production of species i

	R1
	Radius of tubes

	R2
	Radius of shell or the half-length of the distance between two tubes (surface)

	RT
	R1+R2+twall

	Re
	Reynolds number (based on particle)

	Sp
	Surface area of the catalyst particle

	Sc
	Schmidt Number

	Sh
	Sherwood Number

	t
	Time

	twall
	Thickness of the tube wall

	T
	Gas phase temperature

	Tref
	Reference temperature 

	U
	Overall wall heat transfer coefficient

	ug
	Velocity of the gas flow (at any point in the reactor)

	V
	Volume of the reactor

	x
	Dimensionless concentration

	y
	Mass fraction of the species

	z
	Axial position along the reactor

	Greek letters

α
	Activity of the catalyst bed at exothermic side

	β
	Dimensionless heat of reaction

	γ
	Dimensionless activation energy

	-ΔH
	Heat of the reaction

	εb
	Void fraction

	η
	Activity of the catalyst bed at endothermic side

	θ
	Dimensionless temperature

	λ
	Thermal conductivity (gas /solid)

	(
	Dynamic viscosity of gas mixture

	ξ
	Dimensionless axial position
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	ρ
	Density

	τ
	Dimensionless time
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	Ψ
	Ratio of rate of endothermic reaction to the rate of exothermic reaction at the reference temperature
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Subscripts / Superscripts

	b
	Bed

	c
	Endothermic reaction

	cat
	Catalyst

	e
	effective

	f
	Gas-solid film

	g
	Gas phase

	h
	Exothermic reaction

	hom
	homogeneous

	i
	Species index

	in
	Inlet

	j
	= c, h / reaction index (Chapter 7)

	mix, m
	Mixture

	p
	Catalyst Particle

	ref
	Reference

	s
	Solid phase

	T
	Total 

	0
	Inlet / Initial

	*
	Dimensionless quantity
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